Cargando…

Estimating the error of numerical solutions of systems of reaction-diffusion equations /

This paper is concerned with the computational estimation of the error of numerical solutions of potentially degenerate reaction-diffusion equations. The underlying motivation is a desire to compute accurate estimates as opposed to deriving inaccurate analytic upper bounds. In this paper, we outline...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Estep, Donald J., 1959-
Otros Autores: Larson, Mats G., 1968-, Williams, Roy D.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, R.I. : American Mathematical Society, ©2000.
Colección:Memoirs of the American Mathematical Society ; no. 696.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn851088833
003 OCoLC
005 20240329122006.0
006 m o d
007 cr un|||||||||
008 130627s2000 riua ob 000 0 eng d
040 |a GZM  |b eng  |e pn  |c GZM  |d OCLCO  |d COO  |d UIU  |d OCLCF  |d LLB  |d E7B  |d OCLCQ  |d EBLCP  |d YDXCP  |d OCLCQ  |d AU@  |d UKAHL  |d OCLCQ  |d LEAUB  |d VT2  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 908039971  |a 922965016  |a 1086549677 
020 |a 9781470402877 
020 |a 1470402874 
020 |z 9780821820728 
020 |z 0821820729 
029 1 |a AU@  |b 000069468038 
035 |a (OCoLC)851088833  |z (OCoLC)908039971  |z (OCoLC)922965016  |z (OCoLC)1086549677 
050 4 |a QA3  |b .A57 no. 696  |a QA377 
082 0 4 |a 510 s 515/.353  |2 21 
049 |a UAMI 
100 1 |a Estep, Donald J.,  |d 1959-  |1 https://id.oclc.org/worldcat/entity/E39PBJrrvwpGjcTYhbXwMCHpyd 
245 1 0 |a Estimating the error of numerical solutions of systems of reaction-diffusion equations /  |c Donald J. Estep, Mats G. Larson, Roy D. Williams. 
260 |a Providence, R.I. :  |b American Mathematical Society,  |c ©2000. 
300 |a 1 online resource (viii, 109 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 1947-6221 ;  |v v. 696 
500 |a "July 2000, volume 146, number 696 (end of volume)." 
504 |a Includes bibliographical references (106-109). 
588 0 |a Print version record. 
520 8 |a This paper is concerned with the computational estimation of the error of numerical solutions of potentially degenerate reaction-diffusion equations. The underlying motivation is a desire to compute accurate estimates as opposed to deriving inaccurate analytic upper bounds. In this paper, we outline, analyze, and test an approach to obtain computational error estimates based on the introduction of the residual error of the numerical solution and in which the effects of the accumulation of errors are estimated computationally. We begin by deriving an a posteriori relationship between the error of a numerical solution and its residual error using a variational argument. This leads to the introduction of stability factors, which measure the sensitivity of solutions to various kinds of perturbations. Next, we perform some general analysis on the residual errors and stability factors to determine when they are defined and to bound their size. Then we describe the practical use of the theory to estimate the errors of numerical solutions computationally. Several key issues arise in the implementation that remain unresolved and we present partial results and numerical experiments about these points. We use this approach to estimate the error of numerical solutions of nine standard reaction-diffusion models and make a systematic comparison of the time scale over which accurate numerical solutions can be computed for these problems. We also perform a numerical test of the accuracy and reliability of the computational error estimate using the bistable equation. Finally, we apply the general theory to the class of problems that admit invariant regions for the solutions, which includes seven of the main examples. Under this additional stability assumption, we obtain a convergence result in the form of an upper bound on the error from the a posteriori error estimate. We conclude by discussing the preservation of invariant regions under discretization. 
505 0 0 |t 1. Introduction  |t 2. A framework for a posteriori error estimation  |t 3. The size of the residual errors and stability factors  |t 4. Computational error estimation  |t 5. Preservation of invariant rectangles under discretization  |t 6. Details of the analysis in Chapter 2  |t 7. Details of the analysis in Chapter 3  |t 8. Details of the analysis in Chapter 5. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Reaction-diffusion equations. 
650 0 |a Numerical calculations. 
650 0 |a Error analysis (Mathematics) 
650 6 |a Équations de réaction-diffusion. 
650 6 |a Calculs numériques. 
650 6 |a Théorie des erreurs. 
650 7 |a Error analysis (Mathematics)  |2 fast 
650 7 |a Numerical calculations  |2 fast 
650 7 |a Reaction-diffusion equations  |2 fast 
700 1 |a Larson, Mats G.,  |d 1968-  |1 https://id.oclc.org/worldcat/entity/E39PCjy7VTbjQgmrTxtp4by9Kq 
700 1 |a Williams, Roy D. 
758 |i has work:  |a Estimating the error of numerical solutions of systems of reaction-diffusion equations (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGFVQ3kh8QCgdG8YWrRYfq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Estep, Donald J., 1959-  |t Estimating the error of numerical solutions of systems of reaction-diffusion equations /  |x 0065-9266  |z 9780821820728 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 696.  |x 0065-9266 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114583  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35005945 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3114583 
938 |a ebrary  |b EBRY  |n ebr11041361 
938 |a YBP Library Services  |b YANK  |n 12375412 
994 |a 92  |b IZTAP