Cargando…

Invariant measures for unitary groups associated to Kac-Moody Lie algebras /

The main purpose of this paper is to prove the existence, and in some cases the uniqueness, of unitarily invariant measures on formal completions of groups associated to affine Kac-Moody algebras, and associated homogeneous spaces. The basic invariant measure is a natural generalization of Haar meas...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Pickrell, Doug, 1952-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, R.I. : American Mathematical Society, ©2000.
Colección:Memoirs of the American Mathematical Society ; no. 693.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn851088831
003 OCoLC
005 20240329122006.0
006 m o d
007 cr un|||||||||
008 130627s2000 riu ob 000 0 eng d
040 |a GZM  |b eng  |e pn  |c GZM  |d OCLCO  |d COO  |d UIU  |d OCLCF  |d LLB  |d E7B  |d OCLCQ  |d EBLCP  |d YDXCP  |d OCLCQ  |d LEAUB  |d AU@  |d UKAHL  |d OCLCQ  |d VT2  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 908039834  |a 922964982 
020 |a 9781470402846 
020 |a 147040284X 
020 |z 9780821820681 
020 |z 0821820680 
029 1 |a AU@  |b 000069468131 
035 |a (OCoLC)851088831  |z (OCoLC)908039834  |z (OCoLC)922964982 
050 4 |a QA3  |b .A57 no. 693  |a QA252.3 
082 0 4 |a 510 s 512/.55  |2 21 
049 |a UAMI 
100 1 |a Pickrell, Doug,  |d 1952-  |1 https://id.oclc.org/worldcat/entity/E39PCjB7Y3RYfg4td7Rw8HHPV3 
245 1 0 |a Invariant measures for unitary groups associated to Kac-Moody Lie algebras /  |c Doug Pickrell. 
260 |a Providence, R.I. :  |b American Mathematical Society,  |c ©2000. 
300 |a 1 online resource (ix, 125 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 1947-6221 ;  |v v. 693 
500 |a "July 2000, volume 146, number 693 (second of 5 numbers)." 
504 |a Includes bibliographical references (pages 123-125). 
588 0 |a Print version record. 
520 8 |a The main purpose of this paper is to prove the existence, and in some cases the uniqueness, of unitarily invariant measures on formal completions of groups associated to affine Kac-Moody algebras, and associated homogeneous spaces. The basic invariant measure is a natural generalization of Haar measure for a simply connected compact Lie group, and its projection to flag spaces is a generalization of the normalized invariant volume element. The other "invariant measures" are actually measures having values in line bundles over these spaces; these bundle-valued measures heuristically arise from coupling the basic invariant measure to Hermitian structures on associated line bundles, but in this infinite dimensional setting they are generally singular with respect to the basic invariant measure 
505 0 0 |t General introduction  |t I. General theory  |t 1. The formal completions of $G(A)$ and $G(A)/B$  |t 2. Measures on the formal flag space  |t II. Infinite classical groups  |t 0. Introduction for Part II  |t 1. Measures on the formal flag space  |t 2. The case $\mathfrak {g} = sl(\infty, \mathbb {C})$  |t 3. The case $\mathfrak {g} = sl(2\infty, \mathbb {C})$  |t 4. The cases $\mathfrak {g} = o(2\infty, \mathbb {C})$, $o(2\infty + 1, \mathbb {C})$, and $sp(\infty, \mathbb {C})$  |t III. Loop groups  |t 0. Introduction for Part III  |t 1. Extensions of loop groups  |t 2. Completions of loop groups  |t 3. Existence of the measures $\nu _{\beta, k}$, $\beta> 0$  |t 4. Existence of invariant measures  |t IV. Diffeomorphisms of $S^1$  |t 0. Introduction for Part IV  |t 1. Completions and classical analysis  |t 2. The extension $\hat {\mathcal {D}}$ and determinant formulas  |t 3. The measures $\nu _{\beta, c, h}$, $\beta> 0$, $c, h \geq 0$  |t 4. On existence of invariant measures. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Kac-Moody algebras. 
650 0 |a Invariant measures. 
650 0 |a Unitary groups. 
650 6 |a Algèbres de Kac-Moody. 
650 6 |a Mesures invariantes. 
650 6 |a Groupes unitaires. 
650 7 |a Invariant measures  |2 fast 
650 7 |a Kac-Moody algebras  |2 fast 
650 7 |a Unitary groups  |2 fast 
776 0 8 |i Print version:  |a Pickrell, Doug, 1952-  |t Invariant measures for unitary groups associated to Kac-Moody Lie algebras /  |x 0065-9266  |z 9780821820681 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 693.  |x 0065-9266 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114469  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35005942 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3114469 
938 |a ebrary  |b EBRY  |n ebr11041247 
938 |a YBP Library Services  |b YANK  |n 12375410 
994 |a 92  |b IZTAP