|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn851088830 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
130627s2000 riua ob 000 0 eng d |
010 |
|
|
|z 00020860
|
040 |
|
|
|a GZM
|b eng
|e pn
|c GZM
|d OCLCO
|d COO
|d UIU
|d OCLCF
|d LLB
|d E7B
|d OCLCQ
|d EBLCP
|d YDXCP
|d OCLCQ
|d AU@
|d UKAHL
|d OCLCQ
|d LEAUB
|d OCLCQ
|d VT2
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d UIU
|d OCLCO
|d OCLCL
|d INARC
|d OCLCL
|
019 |
|
|
|a 908041466
|a 922981872
|a 1086502477
|a 1413394514
|
020 |
|
|
|a 9781470402822
|
020 |
|
|
|a 1470402823
|
020 |
|
|
|z 9780821820698
|
020 |
|
|
|z 0821820699
|
029 |
1 |
|
|a AU@
|b 000069468082
|
035 |
|
|
|a (OCoLC)851088830
|z (OCoLC)908041466
|z (OCoLC)922981872
|z (OCoLC)1086502477
|z (OCoLC)1413394514
|
050 |
|
4 |
|a QA3.A57 no. 691
|a QA613.2
|
082 |
0 |
4 |
|a 510 s 514/.3
|2 21
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Hughes, Bruce.
|
245 |
1 |
0 |
|a Control and relaxation over the circle /
|c Bruce Hughes, Stratos Prassidis.
|
260 |
|
|
|a Providence, R.I. :
|b American Mathematical Society,
|c 2000.
|
300 |
|
|
|a 1 online resource (ix, 96 pages) :
|b illustrations.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v v. 691
|
500 |
|
|
|a "May 2000, volume 145, number 691 (end of volume)."
|
504 |
|
|
|a Includes bibliographical references (pages 95-96).
|
588 |
0 |
|
|a Print version record.
|
520 |
8 |
|
|a We formulate and prove a geometric version of the Fundamental Theorem of Algebraic K-Theory which relates the K-theory of the Laurent polynomial extension of a ring to the K-theory of the ring. The geometric version relates the higher simple homotopy theory of the product of a finite complex and a circle with that of the complex. By using methods of controlled topology, we also obtain a geometric version of the Fundamental Theorem of Lower Algebraic K-Theory. The main new innovation is a geometrically defined Nil space.
|
505 |
0 |
0 |
|t 1. Introduction and statement of results
|t 2. Moduli spaces of manifolds and maps
|t 3. Wrapping-up and unwrapping as simplicial maps
|t 4. Relaxation as a simplicial map
|t 5. The Whitehead spaces
|t 6. Torsion and a higher sum theorem
|t 7. Nil as a geometrically defined simplicial set
|t 8. Transfers
|t 9. Completion of the proof
|t 10. Comparison with the lower algebraic nil groups.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Infinite-dimensional manifolds.
|
650 |
|
0 |
|a K-theory.
|
650 |
|
6 |
|a Variétés de dimension infinie.
|
650 |
|
6 |
|a K-théorie.
|
650 |
|
7 |
|a Infinite-dimensional manifolds
|2 fast
|
650 |
|
7 |
|a K-theory
|2 fast
|
700 |
1 |
|
|a Prassidis, Stratos,
|d 1962-
|1 https://id.oclc.org/worldcat/entity/E39PCjFP7pxcdRKYmPRg36dyBd
|
758 |
|
|
|i has work:
|a Control and relaxation over the circle (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGkBb8dbrJpkYHJbFp8bv3
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Hughes, Bruce.
|t Control and relaxation over the circle /
|x 0065-9266
|z 9780821820698
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 691.
|x 0065-9266
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114372
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35005940
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3114372
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr11041150
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12375408
|
938 |
|
|
|a Internet Archive
|b INAR
|n controlrelaxatio0000hugh
|
994 |
|
|
|a 92
|b IZTAP
|