Control and relaxation over the circle /
We formulate and prove a geometric version of the Fundamental Theorem of Algebraic K-Theory which relates the K-theory of the Laurent polynomial extension of a ring to the K-theory of the ring. The geometric version relates the higher simple homotopy theory of the product of a finite complex and a c...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, R.I. :
American Mathematical Society,
2000.
|
Colección: | Memoirs of the American Mathematical Society ;
no. 691. |
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | We formulate and prove a geometric version of the Fundamental Theorem of Algebraic K-Theory which relates the K-theory of the Laurent polynomial extension of a ring to the K-theory of the ring. The geometric version relates the higher simple homotopy theory of the product of a finite complex and a circle with that of the complex. By using methods of controlled topology, we also obtain a geometric version of the Fundamental Theorem of Lower Algebraic K-Theory. The main new innovation is a geometrically defined Nil space. |
---|---|
Notas: | "May 2000, volume 145, number 691 (end of volume)." |
Descripción Física: | 1 online resource (ix, 96 pages) : illustrations. |
Bibliografía: | Includes bibliographical references (pages 95-96). |
ISBN: | 9781470402822 1470402823 |
ISSN: | 1947-6221 ; 0065-9266 |