Cargando…

Special groups : boolean-theoretic methods in the theory of quadratic forms /

This monograph presents a systematic study of Special Groups, a first-order universal-existential axiomatization of the theory of quadratic forms, which comprises the usual theory over fields of characteristic different from 2, and is dual to the theory of abstract order spaces. The heart of our the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Dickmann, M. A., 1940-
Otros Autores: Miraglia, Francisco
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, R.I. : American Mathematical Society, 2000.
Colección:Memoirs of the American Mathematical Society ; no. 689.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn851088828
003 OCoLC
005 20240329122006.0
006 m o d
007 cr un|||||||||
008 130627s2000 riua ob 001 0 eng d
040 |a GZM  |b eng  |e pn  |c GZM  |d OCLCO  |d COO  |d UIU  |d OCLCF  |d LLB  |d E7B  |d OCLCQ  |d EBLCP  |d YDXCP  |d OCLCQ  |d Z5A  |d OCLCQ  |d AU@  |d UKAHL  |d OCLCQ  |d LEAUB  |d UAB  |d VT2  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 908039956  |a 922964969  |a 1086465588  |a 1256363181 
020 |a 9781470402808 
020 |a 1470402807 
020 |z 9780821820575 
020 |z 0821820575 
035 |a (OCoLC)851088828  |z (OCoLC)908039956  |z (OCoLC)922964969  |z (OCoLC)1086465588  |z (OCoLC)1256363181 
050 4 |a QA3.A57 no. 689  |a QA243 
082 0 4 |a 510 s 512/.71  |2 21 
049 |a UAMI 
100 1 |a Dickmann, M. A.,  |d 1940-  |1 https://id.oclc.org/worldcat/entity/E39PCjxHqMdFqTYkbM9dYK6fWP 
245 1 0 |a Special groups :  |b boolean-theoretic methods in the theory of quadratic forms /  |c M.A. Dickmann, F. Miraglia. 
260 |a Providence, R.I. :  |b American Mathematical Society,  |c 2000. 
300 |a 1 online resource (xvi, 247 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 1947-6221 ;  |v v. 689 
500 |a "May 2000, volume 145, number 689 (second of 4 numbers)." 
504 |a Includes bibliographical references (pages 239-241) and index. 
588 0 |a Print version record. 
520 8 |a This monograph presents a systematic study of Special Groups, a first-order universal-existential axiomatization of the theory of quadratic forms, which comprises the usual theory over fields of characteristic different from 2, and is dual to the theory of abstract order spaces. The heart of our theory begins in Chapter 4 with the result that Boolean algebras have a natural structure of reduced special group. More deeply, every such group is canonically and functorially embedded in a certain Boolean algebra, its Boolean hull. This hull contains a wealth of information about the structure of the given special group, and much of the later work consists in unveiling it. Thus, in Chapter 7 we introduce two series of invariants "living" in the Boolean hull, which characterize the isometry of forms in any reduced special group. While the multiplicative series--expressed in terms of meet and symmetric difference--constitutes a Boolean version of the Stiefel-Whitney invariants, the additive series--expressed in terms of meet and join--, which we call Horn-Tarski invariants, does not have a known analog in the field case; however, the latter have a considerably more regular behaviour. We give explicit formulas connecting both series, and compute explicitly the invariants for Pfister forms and their linear combinations. In Chapter 9 we combine Boolean-theoretic methods with techniques from Galois cohomology and a result of Voevodsky to obtain an affirmative solution to a long standing conjecture of Marshall concerning quadratic forms over formally real Pythagorean fields. Boolean methods are put to work in Chapter 10 to obtain information about categories of special groups, reduced or not. And again in Chapter 11 to initiate the model-theoretic study of the first-order theory of reduced special groups, where, amongst other things we determine its model-companion. The first-order approach is also present in the study of some outstanding classes of morphisms carried out in Chapter 5, e.g., the pure embeddings of special groups. Chapter 6 is devoted to the study of special groups of continuous functions 
505 0 0 |t 1. Special groups  |t 2. Pfister forms, saturated subgroups and quotients  |t 3. The space of orders of a reduced group. Duality  |t 4. Boolean algebras and reduced special groups  |t 5. Embeddings  |t 6. Special groups of continuous functions  |t 7. Horn-Tarski and Stiefel-Whitney invariants  |t 8. Algebraic $K$-theory of fields and special groups  |t 9. Marshall's conjecture for Pythagorean fields  |t 10. The category of special groups  |t 11. Some model theory of special groups. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Forms, Quadratic. 
650 0 |a Algebra, Boolean. 
650 6 |a Formes quadratiques. 
650 6 |a Algèbre de Boole. 
650 7 |a Algebra, Boolean  |2 fast 
650 7 |a Forms, Quadratic  |2 fast 
700 1 |a Miraglia, Francisco. 
758 |i has work:  |a Special groups (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGGG7WPvpq8Qt7Bbpp8YMX  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Dickmann, M.A., 1940-  |t Special groups :  |x 0065-9266  |z 9780821820575 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 689.  |x 0065-9266 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114562  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35005938 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3114562 
938 |a ebrary  |b EBRY  |n ebr11041340 
938 |a YBP Library Services  |b YANK  |n 12375407 
994 |a 92  |b IZTAP