Sobolev met Poincaré /
There are several generalizations of the classical theory of Sobolev spaces as they are necessary for the applications to Carnot-Caratheodory spaces, subelliptic equations, quasiconformal mappings on Carnot groups and more general Loewner spaces, analysis on topological manifolds, potential theory o...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, R.I. :
American Mathematical Society,
©2000.
|
Colección: | Memoirs of the American Mathematical Society ;
no. 688. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Introduction 2. What are Poincaré and Sobolev inequalities? 3. Poincaré inequalities, pointwise estimates, and Sobolev classes 4. Examples and necessary conditions 5. Sobolev type inequalities by means of Riesz potentials 6. Trudinger inequality 7. A version of the Sobolev embedding theorem on spheres 8. Rellich-Kondrachov 9. Sobolev classes in John domains 10. Poincaré inequality: examples 11. Carnot-Carathéodory spaces 12. Graphs 13. Applications to P.D.E and nonlinear potential theory 14. Appendix.