|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn851088792 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
130627s1998 riu ob 000 0 eng d |
040 |
|
|
|a GZM
|b eng
|e pn
|c GZM
|d OCLCO
|d COO
|d UIU
|d OCLCF
|d N$T
|d LLB
|d YDXCP
|d OCLCQ
|d EBLCP
|d OCLCQ
|d LEAUB
|d UKAHL
|d OCLCQ
|d K6U
|d OCLCQ
|d OCLCO
|d INARC
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 922965052
|
020 |
|
|
|a 9781470402303
|q (electronic bk.)
|
020 |
|
|
|a 1470402300
|q (electronic bk.)
|
020 |
|
|
|z 0821808087
|q (acid-free paper)
|
020 |
|
|
|z 9780821808085
|q (acid-free paper)
|
029 |
1 |
|
|a AU@
|b 000069468147
|
035 |
|
|
|a (OCoLC)851088792
|z (OCoLC)922965052
|
050 |
|
4 |
|a QA3
|b .A57 no. 641
|a QC20.7.E88
|
072 |
|
7 |
|a MAT
|x 039000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 023000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 026000
|2 bisacsh
|
082 |
0 |
4 |
|a 510 s
|a 515/.353
|2 21
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Algebro-geometric quasi-periodic finite-gap solutions of the Toda and Kac-van Moerbeke hierarchies /
|c W. Bulla [and others].
|
260 |
|
|
|a Providence, R.I. :
|b American Mathematical Society,
|c ©1998.
|
300 |
|
|
|a 1 online resource (viii, 79 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v v. 641
|
500 |
|
|
|a "September 1998, volume 135, number 641 (first of 5 numbers)."
|
504 |
|
|
|a Includes bibliographical references (pages 76-79).
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
0 |
|t 1. Introduction
|t 2. The Toda hierarchy, recursion relations, and hyperelliptic curves
|t 3. The stationary Baker-Akhiezer function
|t 4. Spectral theory for finite-gap Jacobi operators
|t 5. Quasi-periodic finite-gap solutions of the stationary Toda hierarchy
|t 6. Quasi-periodic finite-gap solutions of the Toda hierarchy and the time-dependent Baker-Akhiezer function
|t 7. The Kac-van Moerbeke hierarchy and its relation to the Toda hierarchy
|t 8. Spectral theory for finite-gap Dirac-type difference operators
|t 9. Quasi-periodic finite-gap solutions of the Kac-van Moerbeke hierarchy.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Evolution equations, Nonlinear
|x Numerical solutions.
|
650 |
|
0 |
|a Geometry, Algebraic.
|
650 |
|
0 |
|a Mathematical physics.
|
650 |
|
6 |
|a Équations d'évolution non linéaires
|x Solutions numériques.
|
650 |
|
6 |
|a Géométrie algébrique.
|
650 |
|
6 |
|a Physique mathématique.
|
650 |
|
7 |
|a MATHEMATICS
|x Essays.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Pre-Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Reference.
|2 bisacsh
|
650 |
|
7 |
|a Evolution equations, Nonlinear
|x Numerical solutions
|2 fast
|
650 |
|
7 |
|a Geometry, Algebraic
|2 fast
|
650 |
|
7 |
|a Mathematical physics
|2 fast
|
700 |
1 |
|
|a Bulla, W.
|q (Wolfgang),
|d 1942-
|1 https://id.oclc.org/worldcat/entity/E39PCjD3Bwy7RMx8hPDyhXqmMK
|
758 |
|
|
|i has work:
|a Algebro-geometric quasi-periodic finite-gap solutions of the Toda and Kac-van Moerbeke hierarchies (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGb639dh73q78gFDPjygqP
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|t Algebro-geometric quasi-periodic finite-gap solutions of the Toda and Kac-van Moerbeke hierarchies /
|x 0065-9266
|z 9780821808085
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 641.
|x 0065-9266
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114453
|z Texto completo
|
938 |
|
|
|a Internet Archive
|b INAR
|n algebrogeometric0000unse
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35005890
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3114453
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 843144
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12081639
|
994 |
|
|
|a 92
|b IZTAP
|