|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn851088783 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
130627s1998 riu ob 000 0 eng d |
040 |
|
|
|a GZM
|b eng
|e pn
|c GZM
|d OCLCO
|d COO
|d UIU
|d OCLCF
|d N$T
|d LLB
|d YDXCP
|d OCLCQ
|d EBLCP
|d OCLCQ
|d LEAUB
|d UKAHL
|d OCLCQ
|d K6U
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 922982045
|
020 |
|
|
|a 9781470402112
|q (electronic bk.)
|
020 |
|
|
|a 1470402114
|q (electronic bk.)
|
020 |
|
|
|z 0821808303
|q (acid-free paper)
|
020 |
|
|
|z 9780821808306
|q (acid-free paper)
|
029 |
1 |
|
|a AU@
|b 000069468103
|
035 |
|
|
|a (OCoLC)851088783
|z (OCoLC)922982045
|
050 |
|
4 |
|a QA3
|b .A57 no. 622
|a QA614.3
|
072 |
|
7 |
|a MAT
|x 039000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 023000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 026000
|2 bisacsh
|
082 |
0 |
4 |
|a 510 s
|a 515/.353
|2 21
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Fontana, Luigi,
|d 1960-
|
245 |
1 |
0 |
|a Hodge theory in the Sobolev topology for the de Rham complex /
|c Luigi Fontana, Steven G. Krantz, Marco M. Peloso.
|
260 |
|
|
|a Providence, R.I. :
|b American Mathematical Society,
|c ©1998.
|
300 |
|
|
|a 1 online resource (viii, 100 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v v. 622
|
500 |
|
|
|a "January 1998, volume 131, number 622 (second of 4 numbers)."
|
504 |
|
|
|a Includes bibliographical references (pages 98-100).
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
0 |
|t Preliminaries
|t 0. Introductory remarks
|t 1. Basic notation and definitions
|t 2. Formulation of the problem and statement of the main results
|t The problem on the half space
|t 3. The operator $d$* on 1-forms and its domain
|t 4. Boutet De Monvel-type analysis of the boundary value problem
|t 5. The explicit solution in the case of functions
|t 6. Analysis of the problem on the half space for $q$-forms
|t The case of smoothly bounded domains
|t 7. Formulation of the problem on a smoothly bounded domain
|t 8. A special coordinate system
|t 9. The existence theorem
|t 10. The regularity theorem in the case of functions
|t 11. Estimates for $q$-forms
|t 12. The decomposition theorem and conclusions
|t 13. Final remarks.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Hodge theory.
|
650 |
|
0 |
|a Differential equations, Elliptic.
|
650 |
|
0 |
|a Boundary value problems.
|
650 |
|
0 |
|a Complexes.
|
650 |
|
6 |
|a Théorie de Hodge.
|
650 |
|
6 |
|a Équations différentielles elliptiques.
|
650 |
|
6 |
|a Problèmes aux limites.
|
650 |
|
6 |
|a Complexes (Mathématiques)
|
650 |
|
7 |
|a MATHEMATICS
|x Essays.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Pre-Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Reference.
|2 bisacsh
|
650 |
|
7 |
|a Boundary value problems
|2 fast
|
650 |
|
7 |
|a Complexes
|2 fast
|
650 |
|
7 |
|a Differential equations, Elliptic
|2 fast
|
650 |
|
7 |
|a Hodge theory
|2 fast
|
700 |
1 |
|
|a Krantz, Steven G.
|q (Steven George),
|d 1951-
|
700 |
1 |
|
|a Peloso, Marco M.
|
758 |
|
|
|i has work:
|a Hodge theory in the Sobolev topology for the de Rham complex (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFM84MqVKWXVvbkHJP8CpP
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Fontana, Luigi, 1960-
|t Hodge theory in the Sobolev topology for the de Rham complex /
|x 0065-9266
|z 9780821808306
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 622.
|x 0065-9266
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114351
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35005871
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3114351
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 843125
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12081621
|
994 |
|
|
|a 92
|b IZTAP
|