|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn851088635 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
130627s2001 riu ob 000 0 eng d |
040 |
|
|
|a GZM
|b eng
|e pn
|c GZM
|d OCLCO
|d COO
|d UIU
|d OCLCF
|d LLB
|d E7B
|d OCLCQ
|d EBLCP
|d YDXCP
|d OCLCQ
|d LEAUB
|d AU@
|d UKAHL
|d OCLCQ
|d VT2
|d OCLCO
|d OCLCQ
|d INARC
|d OCLCO
|d OCL
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 908039833
|a 922964779
|
020 |
|
|
|a 9781470402990
|
020 |
|
|
|a 1470402998
|
020 |
|
|
|z 9780821826195
|
020 |
|
|
|z 0821826190
|
029 |
1 |
|
|a AU@
|b 000069468132
|
035 |
|
|
|a (OCoLC)851088635
|z (OCoLC)908039833
|z (OCoLC)922964779
|
050 |
|
4 |
|a QA3
|b .A57 no. 708
|a QA175
|
082 |
0 |
4 |
|a 510 s 512/.2
|2 21
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Kantor, W. M.
|q (William M.),
|d 1944-
|1 https://id.oclc.org/worldcat/entity/E39PBJfrRgg7dm9yJmgbFhwwG3
|
245 |
1 |
0 |
|a Black box classical groups /
|c William M. Kantor, Ákos Seress.
|
260 |
|
|
|a Providence, R.I. :
|b American Mathematical Society,
|c ©2001.
|
300 |
|
|
|a 1 online resource (viii, 168 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v v. 708
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
0 |
|
|a Print version record.
|
520 |
8 |
|
|a If a black box simple group is known to be isomorphic to a classical group over a field of known characteristic, a Las Vegas algorithm is used to produce an explicit isomorphism. The proof relies on the geometry of the classical groups rather than on difficult group-theoretic background. This algorithm has applications to matrix group questions and to nearly linear time algorithms for permutation groups. In particular, we upgrade all known nearly linear time Monte Carlo permutation group algorithms to nearly linear Las Vegas algorithms when the input group has no composition factor isomorphic to an exceptional group of Lie type or a 3-dimensional unitary group.
|
505 |
0 |
0 |
|t 1. Introduction
|t 2. Preliminaries
|t 3. Special linear groups: PSL($d, q$)
|t 4. Orthogonal groups: $P\Omega ^\epsilon (d, q)$
|t 5. Symplectic groups: $\mathrm {PSp}(2m, q)$
|t 6. Unitary groups: $\mathrm {PSU}(d, q)$
|t 7. Proofs of Theorems 1.1 and 1.1, and of Corollaries 1.2-1.4
|t 8. Permutation group algorithms
|t 9. Concluding remarks.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Permutation groups.
|
650 |
|
0 |
|a Matrix groups.
|
650 |
|
0 |
|a Algorithms.
|
650 |
|
0 |
|a Computer algorithms.
|
650 |
|
6 |
|a Groupes de permutations.
|
650 |
|
6 |
|a Groupes de matrices.
|
650 |
|
6 |
|a Algorithmes.
|
650 |
|
7 |
|a algorithms.
|2 aat
|
650 |
|
7 |
|a Computer algorithms
|2 fast
|
650 |
|
7 |
|a Algorithms
|2 fast
|
650 |
|
7 |
|a Matrix groups
|2 fast
|
650 |
|
7 |
|a Permutation groups
|2 fast
|
700 |
1 |
|
|a Seress, Ákos,
|d 1958-
|1 https://id.oclc.org/worldcat/entity/E39PBJx4tRTgb8KFMwq98HYVmd
|
758 |
|
|
|i has work:
|a Black box classical groups (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFt9DdYWq3cBPVcPTx89Qm
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Kantor, W.M. 1944-
|t Black box classical groups /
|x 0065-9266
|z 9780821826195
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 708.
|x 0065-9266
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114468
|z Texto completo
|
938 |
|
|
|a Internet Archive
|b INAR
|n blackboxclassica0000kant
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35005956
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3114468
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr11041246
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12375423
|
994 |
|
|
|a 92
|b IZTAP
|