Cargando…

Black box classical groups /

If a black box simple group is known to be isomorphic to a classical group over a field of known characteristic, a Las Vegas algorithm is used to produce an explicit isomorphism. The proof relies on the geometry of the classical groups rather than on difficult group-theoretic background. This algori...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kantor, W. M. (William M.), 1944-
Otros Autores: Seress, Ákos, 1958-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, R.I. : American Mathematical Society, ©2001.
Colección:Memoirs of the American Mathematical Society ; no. 708.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn851088635
003 OCoLC
005 20240329122006.0
006 m o d
007 cr un|||||||||
008 130627s2001 riu ob 000 0 eng d
040 |a GZM  |b eng  |e pn  |c GZM  |d OCLCO  |d COO  |d UIU  |d OCLCF  |d LLB  |d E7B  |d OCLCQ  |d EBLCP  |d YDXCP  |d OCLCQ  |d LEAUB  |d AU@  |d UKAHL  |d OCLCQ  |d VT2  |d OCLCO  |d OCLCQ  |d INARC  |d OCLCO  |d OCL  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 908039833  |a 922964779 
020 |a 9781470402990 
020 |a 1470402998 
020 |z 9780821826195 
020 |z 0821826190 
029 1 |a AU@  |b 000069468132 
035 |a (OCoLC)851088635  |z (OCoLC)908039833  |z (OCoLC)922964779 
050 4 |a QA3  |b .A57 no. 708  |a QA175 
082 0 4 |a 510 s 512/.2  |2 21 
049 |a UAMI 
100 1 |a Kantor, W. M.  |q (William M.),  |d 1944-  |1 https://id.oclc.org/worldcat/entity/E39PBJfrRgg7dm9yJmgbFhwwG3 
245 1 0 |a Black box classical groups /  |c William M. Kantor, Ákos Seress. 
260 |a Providence, R.I. :  |b American Mathematical Society,  |c ©2001. 
300 |a 1 online resource (viii, 168 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 1947-6221 ;  |v v. 708 
504 |a Includes bibliographical references. 
588 0 |a Print version record. 
520 8 |a If a black box simple group is known to be isomorphic to a classical group over a field of known characteristic, a Las Vegas algorithm is used to produce an explicit isomorphism. The proof relies on the geometry of the classical groups rather than on difficult group-theoretic background. This algorithm has applications to matrix group questions and to nearly linear time algorithms for permutation groups. In particular, we upgrade all known nearly linear time Monte Carlo permutation group algorithms to nearly linear Las Vegas algorithms when the input group has no composition factor isomorphic to an exceptional group of Lie type or a 3-dimensional unitary group. 
505 0 0 |t 1. Introduction  |t 2. Preliminaries  |t 3. Special linear groups: PSL($d, q$)  |t 4. Orthogonal groups: $P\Omega ^\epsilon (d, q)$  |t 5. Symplectic groups: $\mathrm {PSp}(2m, q)$  |t 6. Unitary groups: $\mathrm {PSU}(d, q)$  |t 7. Proofs of Theorems 1.1 and 1.1, and of Corollaries 1.2-1.4  |t 8. Permutation group algorithms  |t 9. Concluding remarks. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Permutation groups. 
650 0 |a Matrix groups. 
650 0 |a Algorithms. 
650 0 |a Computer algorithms. 
650 6 |a Groupes de permutations. 
650 6 |a Groupes de matrices. 
650 6 |a Algorithmes. 
650 7 |a algorithms.  |2 aat 
650 7 |a Computer algorithms  |2 fast 
650 7 |a Algorithms  |2 fast 
650 7 |a Matrix groups  |2 fast 
650 7 |a Permutation groups  |2 fast 
700 1 |a Seress, Ákos,  |d 1958-  |1 https://id.oclc.org/worldcat/entity/E39PBJx4tRTgb8KFMwq98HYVmd 
758 |i has work:  |a Black box classical groups (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFt9DdYWq3cBPVcPTx89Qm  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Kantor, W.M. 1944-  |t Black box classical groups /  |x 0065-9266  |z 9780821826195 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 708.  |x 0065-9266 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114468  |z Texto completo 
938 |a Internet Archive  |b INAR  |n blackboxclassica0000kant 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35005956 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3114468 
938 |a ebrary  |b EBRY  |n ebr11041246 
938 |a YBP Library Services  |b YANK  |n 12375423 
994 |a 92  |b IZTAP