|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn851088552 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
130627s1997 riua ob 000 0 eng d |
040 |
|
|
|a GZM
|b eng
|e pn
|c GZM
|d OCLCO
|d COO
|d UIU
|d N$T
|d LLB
|d YDXCP
|d OCLCQ
|d EBLCP
|d OCLCQ
|d OCLCF
|d UKAHL
|d OCLCQ
|d K6U
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 922965023
|
020 |
|
|
|a 9781470402013
|q (electronic bk.)
|
020 |
|
|
|a 1470402017
|q (electronic bk.)
|
020 |
|
|
|z 0821806424
|q (acid-free paper)
|
020 |
|
|
|z 9780821806425
|q (acid-free paper)
|
029 |
1 |
|
|a AU@
|b 000069467507
|
035 |
|
|
|a (OCoLC)851088552
|z (OCoLC)922965023
|
050 |
|
4 |
|a QA3
|b .A57 no. 616
|a QA323
|
072 |
|
7 |
|a LIT
|x 004020
|2 bisacsh
|
082 |
0 |
4 |
|a 813/.54
|2 21
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Bobkov, Serguei G.
|q (Serguei Germanovich),
|d 1961-
|1 https://id.oclc.org/worldcat/entity/E39PBJrcjmkrbyc6HHJwm43G73
|
245 |
1 |
0 |
|a Some connections between isoperimetric and Sobolev-type inequalities /
|c Serguei G. Bobkov, Christian Houdré.
|
260 |
|
|
|a Providence, R.I. :
|b American Mathematical Society,
|c ©1997.
|
300 |
|
|
|a 1 online resource (viii, 111 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v v. 616
|
500 |
|
|
|a "September 1997, volume 129, number 616 (end of volume)."
|
504 |
|
|
|a Includes bibliographical references (pages 109-111).
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
0 |
|t 1. Introduction
|t 2. Differential and integral forms of isoperimetric inequalities
|t 3. Proof of Theorem 1.1
|t 4. A relation between the distribution of a function and its derivative
|t 5. A variational problem
|t 6. The discrete version of Theorem 5.1
|t 7. Proof of Propositions 1.3 and 1.5
|t 8. A special case of Theorem 1.2
|t 9. The uniform distribution on the sphere
|t 10. Existence of optimal Orlicz spaces
|t 11. Proof of Theorem 1.9 (the case of the sphere)
|t 12. Proof of Theorem 1.9 (the Gaussian case)
|t 13. The isoperimetric problem on the real line
|t 14. Isoperimetric and Sobolev-type inequalities on the real line
|t 15. Extensions of Sobolev-type inequalities to product measures on $\mathbf {R}^n$
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Sobolov spaces.
|
650 |
|
0 |
|a Geometric measure theory.
|
650 |
|
0 |
|a Uniform distribution (Probability theory)
|
650 |
|
0 |
|a Gaussian processes.
|
650 |
|
6 |
|a Théorie de la mesure géométrique.
|
650 |
|
6 |
|a Loi uniforme (Théorie des probabilités)
|
650 |
|
6 |
|a Processus gaussiens.
|
650 |
|
7 |
|a LITERARY CRITICISM
|x American
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Gaussian processes
|2 fast
|
650 |
|
7 |
|a Geometric measure theory
|2 fast
|
650 |
|
7 |
|a Uniform distribution (Probability theory)
|2 fast
|
700 |
1 |
|
|a Houdré, Christian.
|
758 |
|
|
|i has work:
|a Some connections between isoperimetric and Sobolev-type inequalities (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGx37RYJMVXmmmfbycYvBP
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Bobkov, Serguei G. 1961-
|t Some connections between isoperimetric and Sobolev-type inequalities /
|x 0065-9266
|z 9780821806425
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 616.
|x 0065-9266
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114525
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35005862
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3114525
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 843119
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12081615
|
994 |
|
|
|a 92
|b IZTAP
|