Cargando…

Degree theory for equivariant maps, the general S1-action /

In this paper, we consider general [italic]S¹-actions, which may differ on the domain and on the range, with isotropy subspaces with one dimension more on the domain. In the special case of self-maps the [italic]S¹-degree is given by the usual degree of the invariant part, while for one parameter [i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ize, Jorge, 1946-
Otros Autores: Massabo, Ivar, 1947-, Vignoli, Alfonso, 1940-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, R.I. : American Mathematical Society, 1992.
Colección:Memoirs of the American Mathematical Society ; no. 481.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Preliminaries 2. Extensions of $S^1$-maps 3. Homotopy groups of $S^1$-maps 4. Degree of $S^1$-maps 5. $S^1$-index of an isolated non-stationary orbit and applications 6. Index of an isolated orbit of stationary solutions and applications 7. Virtual periods and orbit index Appendix. Additivity up to one suspension.