Cargando…

Degree theory for equivariant maps, the general S1-action /

In this paper, we consider general [italic]S¹-actions, which may differ on the domain and on the range, with isotropy subspaces with one dimension more on the domain. In the special case of self-maps the [italic]S¹-degree is given by the usual degree of the invariant part, while for one parameter [i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ize, Jorge, 1946-
Otros Autores: Massabo, Ivar, 1947-, Vignoli, Alfonso, 1940-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, R.I. : American Mathematical Society, 1992.
Colección:Memoirs of the American Mathematical Society ; no. 481.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn851088424
003 OCoLC
005 20240329122006.0
006 m o d
007 cr un|||||||||
008 130627s1992 riu ob 000 0 eng d
040 |a GZM  |b eng  |e pn  |c GZM  |d OCLCO  |d COO  |d UIU  |d OCLCF  |d N$T  |d E7B  |d LLB  |d YDXCP  |d OCLCQ  |d EBLCP  |d DEBSZ  |d OCLCQ  |d LEAUB  |d UKAHL  |d OCLCQ  |d INARC  |d OCLCO  |d OCLCQ  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 922981474 
020 |a 9781470400583  |q (electronic bk.) 
020 |a 1470400588  |q (electronic bk.) 
020 |z 0821825429  |q (acid-free paper) 
020 |z 9780821825426  |q (acid-free paper) 
029 1 |a CHNEW  |b 000891903 
029 1 |a DEBBG  |b BV043892247 
029 1 |a DEBSZ  |b 449622681 
035 |a (OCoLC)851088424  |z (OCoLC)922981474 
050 4 |a QA3  |b .A57 no. 481  |a QA612 
072 7 |a MAT  |x 039000  |2 bisacsh 
072 7 |a MAT  |x 023000  |2 bisacsh 
072 7 |a MAT  |x 026000  |2 bisacsh 
082 0 4 |a 510 s  |a 514/.2  |2 20 
084 |a 31.55  |2 bcl 
084 |a SI 810  |2 rvk 
084 |a MAT 578f  |2 stub 
084 |a MAT 553f  |2 stub 
049 |a UAMI 
100 1 |a Ize, Jorge,  |d 1946-  |1 https://id.oclc.org/worldcat/entity/E39PCjHFdvrdRVfMkbVCXBWX7d 
245 1 0 |a Degree theory for equivariant maps, the general S1-action /  |c Jorge Ize, Ivar Massabo, Alfonso Vignoli. 
260 |a Providence, R.I. :  |b American Mathematical Society,  |c 1992. 
300 |a 1 online resource (ix, 179 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 1947-6221 ;  |v v. 481 
500 |a "November 1992, volume 100, number 481 (end of volume)." 
504 |a Includes bibliographical references (pages 177-179). 
588 0 |a Print version record. 
505 0 0 |t 1. Preliminaries  |t 2. Extensions of $S^1$-maps  |t 3. Homotopy groups of $S^1$-maps  |t 4. Degree of $S^1$-maps  |t 5. $S^1$-index of an isolated non-stationary orbit and applications  |t 6. Index of an isolated orbit of stationary solutions and applications  |t 7. Virtual periods and orbit index  |t Appendix. Additivity up to one suspension. 
520 |a In this paper, we consider general [italic]S¹-actions, which may differ on the domain and on the range, with isotropy subspaces with one dimension more on the domain. In the special case of self-maps the [italic]S¹-degree is given by the usual degree of the invariant part, while for one parameter [italic]S¹-maps one has an integer for each isotropy subgroup different from [italic]S¹. In particular we recover all the [italic]S¹-degrees introduced in special cases by other authors and we are also able to interpret period doubling results on the basis of our [italic]S¹-degree. The applications concern essentially periodic solutions of ordinary differential equations. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Topological degree. 
650 0 |a Mappings (Mathematics) 
650 0 |a Homotopy groups. 
650 0 |a Sphere. 
650 6 |a Degré topologique. 
650 6 |a Applications (Mathématiques) 
650 6 |a Groupes d'homotopie. 
650 6 |a Sphère. 
650 7 |a spheres (geometric figures)  |2 aat 
650 7 |a MATHEMATICS  |x Essays.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Pre-Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Reference.  |2 bisacsh 
650 7 |a Homotopy groups  |2 fast 
650 7 |a Mappings (Mathematics)  |2 fast 
650 7 |a Sphere  |2 fast 
650 7 |a Topological degree  |2 fast 
650 7 |a Äquivariante Abbildung  |2 gnd 
650 7 |a Abbildungsgrad  |2 gnd 
650 7 |a Homotopiegruppe  |2 gnd 
650 7 |a Kugel  |2 gnd 
650 7 |a Homotopia.  |2 larpcal 
700 1 |a Massabo, Ivar,  |d 1947-  |1 https://id.oclc.org/worldcat/entity/E39PCjKkX6rxkj8Gx6ygcPHJMq 
700 1 |a Vignoli, Alfonso,  |d 1940-  |1 https://id.oclc.org/worldcat/entity/E39PCjFDYjVhg8wYCtKfhXgRJC 
776 0 8 |i Print version:  |a Ize, Jorge, 1946-  |t Degree theory for equivariant maps, the general S1-action /  |x 0065-9266  |z 9780821825426 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 481.  |x 0065-9266 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114010  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35005723 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3114010 
938 |a ebrary  |b EBRY  |n ebr10918963 
938 |a EBSCOhost  |b EBSC  |n 838542 
938 |a Internet Archive  |b INAR  |n degreetheoryfore0000izej 
938 |a YBP Library Services  |b YANK  |n 12057166 
994 |a 92  |b IZTAP