Cargando…

Degree theory for equivariant maps, the general S1-action /

In this paper, we consider general [italic]S¹-actions, which may differ on the domain and on the range, with isotropy subspaces with one dimension more on the domain. In the special case of self-maps the [italic]S¹-degree is given by the usual degree of the invariant part, while for one parameter [i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ize, Jorge, 1946-
Otros Autores: Massabo, Ivar, 1947-, Vignoli, Alfonso, 1940-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, R.I. : American Mathematical Society, 1992.
Colección:Memoirs of the American Mathematical Society ; no. 481.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:In this paper, we consider general [italic]S¹-actions, which may differ on the domain and on the range, with isotropy subspaces with one dimension more on the domain. In the special case of self-maps the [italic]S¹-degree is given by the usual degree of the invariant part, while for one parameter [italic]S¹-maps one has an integer for each isotropy subgroup different from [italic]S¹. In particular we recover all the [italic]S¹-degrees introduced in special cases by other authors and we are also able to interpret period doubling results on the basis of our [italic]S¹-degree. The applications concern essentially periodic solutions of ordinary differential equations.
Notas:"November 1992, volume 100, number 481 (end of volume)."
Descripción Física:1 online resource (ix, 179 pages)
Bibliografía:Includes bibliographical references (pages 177-179).
ISBN:9781470400583
1470400588
ISSN:1947-6221 ;
0065-9266