Degree theory for equivariant maps, the general S1-action /
In this paper, we consider general [italic]S¹-actions, which may differ on the domain and on the range, with isotropy subspaces with one dimension more on the domain. In the special case of self-maps the [italic]S¹-degree is given by the usual degree of the invariant part, while for one parameter [i...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, R.I. :
American Mathematical Society,
1992.
|
Colección: | Memoirs of the American Mathematical Society ;
no. 481. |
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | In this paper, we consider general [italic]S¹-actions, which may differ on the domain and on the range, with isotropy subspaces with one dimension more on the domain. In the special case of self-maps the [italic]S¹-degree is given by the usual degree of the invariant part, while for one parameter [italic]S¹-maps one has an integer for each isotropy subgroup different from [italic]S¹. In particular we recover all the [italic]S¹-degrees introduced in special cases by other authors and we are also able to interpret period doubling results on the basis of our [italic]S¹-degree. The applications concern essentially periodic solutions of ordinary differential equations. |
---|---|
Notas: | "November 1992, volume 100, number 481 (end of volume)." |
Descripción Física: | 1 online resource (ix, 179 pages) |
Bibliografía: | Includes bibliographical references (pages 177-179). |
ISBN: | 9781470400583 1470400588 |
ISSN: | 1947-6221 ; 0065-9266 |