|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn851088321 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
130627s1988 riu ob 000 0 eng d |
040 |
|
|
|a GZM
|b eng
|e pn
|c GZM
|d OCLCO
|d COO
|d UIU
|d OCLCF
|d N$T
|d E7B
|d LLB
|d YDXCP
|d OCLCQ
|d EBLCP
|d OCLCQ
|d LEAUB
|d UKAHL
|d OCLCQ
|d K6U
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 922981348
|
020 |
|
|
|a 9781470408084
|q (electronic bk.)
|
020 |
|
|
|a 1470408082
|q (electronic bk.)
|
020 |
|
|
|z 0821824511
|q (alk. paper)
|
020 |
|
|
|z 9780821824511
|q (alk. paper)
|
035 |
|
|
|a (OCoLC)851088321
|z (OCoLC)922981348
|
050 |
|
4 |
|a QA3
|b .A57 no. 388
|a QA614.58
|
072 |
|
7 |
|a MAT
|x 039000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 023000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 026000
|2 bisacsh
|
082 |
0 |
4 |
|a 510 s
|a 514/.224
|2 19
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Lipman, Joseph.
|
245 |
1 |
0 |
|a Topological invariants of quasi-ordinary singularities /
|c Joseph Lipman. Embedded topological classification of quasi-ordinary singularities / Yih-Nan Gau ; with an appendix by Joseph Lipman.
|
260 |
|
|
|a Providence, R.I., USA :
|b American Mathematical Society,
|c ©1988.
|
300 |
|
|
|a 1 online resource (iv, 129 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v v. 388
|
500 |
|
|
|a "Volume 74, number 388."
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
0 |
|t Topological invariants of quasi-ordinary singularities (by Joseph Lipman)
|t Introduction
|t Part I. Rational equivalence and local homology in codimension one
|t 1. Local fundamental class map
|t 2. Codimension one cycles at quotient singularities
|t 3. Quasi-ordinary singularities
|t 4. Presentation of the group $A_{d-1} \cong H_{2d-2}$
|t Part II. The hypersurface case
|t 5. Characteristics monomials of quasi-ordinary parametrizations
|t 6. Topological invariance of the reduced branching sequence
|t 7. Appendix: The singular locus
|t Embedded topological classification of quasi-ordinary singularities (by Yih-Nan Gau)
|t Introduction
|t 1. Statement of main results
|t 2. Some plane sections of $X$ and two key lemmas
|t 3. Topological invariants
|t 4. Proof of the main theorem
|t Appendix (by J. Lipman).
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Singularities (Mathematics)
|
650 |
|
0 |
|a Analytic spaces.
|
650 |
|
0 |
|a Knot theory.
|
650 |
|
6 |
|a Singularités (Mathématiques)
|
650 |
|
6 |
|a Espaces analytiques.
|
650 |
|
6 |
|a Théorie des nœuds.
|
650 |
|
7 |
|a MATHEMATICS
|x Essays.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Pre-Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Reference.
|2 bisacsh
|
650 |
|
7 |
|a Analytic spaces
|2 fast
|
650 |
|
7 |
|a Knot theory
|2 fast
|
650 |
|
7 |
|a Singularities (Mathematics)
|2 fast
|
700 |
1 |
2 |
|a Gau, Yih-Nan,
|d 1963-
|t Embedded topological classification of quasi-ordinary singularities.
|f 1988.
|
758 |
|
|
|i has work:
|a Topological invariants of quasi-ordinary singularities, embedded topological classificationof quasi-ordinary singularities (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFyCh98PgHgG49mG4X7Hvd
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Lipman, Joseph.
|t Topological invariants of quasi-ordinary singularities /
|x 0065-9266
|z 9780821824511
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 388.
|x 0065-9266
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3113908
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35006443
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3113908
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10918861
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 838451
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12055386
|
994 |
|
|
|a 92
|b IZTAP
|