|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn851087880 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
130627s1980 riua ob 000 0 eng d |
010 |
|
|
|z 80016612
|
040 |
|
|
|a GZM
|b eng
|e pn
|c GZM
|d OCLCO
|d COO
|d UIU
|d E7B
|d OCLCF
|d LLB
|d EBLCP
|d OCLCQ
|d YDXCP
|d OCLCQ
|d AU@
|d TXI
|d UKAHL
|d OCLCQ
|d LEAUB
|d QGK
|d REDDC
|d INARC
|d VT2
|d K6U
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1058272211
|a 1086491236
|a 1097142151
|a 1241826047
|a 1258906206
|a 1258948568
|a 1259488007
|a 1262670109
|a 1280788236
|a 1290105572
|
020 |
|
|
|a 9781470406370
|
020 |
|
|
|a 1470406373
|
020 |
|
|
|z 0821822330
|
020 |
|
|
|z 9780821822333
|
029 |
1 |
|
|a AU@
|b 000056872509
|
035 |
|
|
|a (OCoLC)851087880
|z (OCoLC)1058272211
|z (OCoLC)1086491236
|z (OCoLC)1097142151
|z (OCoLC)1241826047
|z (OCoLC)1258906206
|z (OCoLC)1258948568
|z (OCoLC)1259488007
|z (OCoLC)1262670109
|z (OCoLC)1280788236
|z (OCoLC)1290105572
|
050 |
|
4 |
|a QA3
|b .A57 no. 233
|a QA613.62
|
082 |
0 |
4 |
|a 510 s
|a 514/.72
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Hardorp, Detlef.
|
245 |
1 |
0 |
|a All compact orientable three dimensional manifolds admit total foliations /
|c Detlef Hardorp.
|
260 |
|
|
|a Providence, R.I. :
|b American Mathematical Society,
|c 1980.
|
300 |
|
|
|a 1 online resource (vi, 74 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v v. 233
|
500 |
|
|
|a Volume 26 ... (first of two numbers)."
|
500 |
|
|
|a "A slightly revised version of the author's Ph. D thesis (Princeton, 1978)."
|
504 |
|
|
|a Includes bibliographical references (page 74).
|
505 |
0 |
0 |
|t 1. Total foliations for $n$ dimensional manifolds
|t 2.
|t 3. Some simple examples of total foliations for $T^3$, $S^2 \times S^1$, and $S^3$
|t 4. Constructing total foliations for all oriented circle bundles over two manifolds
|t 5. Total foliations for the Poincaré homology sphere ($Q^3$)
|t 6. Foliations of $Q^3$ with intertwining
|t 7. The proof of the main theorem.
|
588 |
0 |
|
|a Print version record.
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Foliations (Mathematics)
|
650 |
|
0 |
|a Three-manifolds (Topology)
|
650 |
|
6 |
|a Feuilletages (Mathématiques)
|
650 |
|
6 |
|a Variétés topologiques à 3 dimensions.
|
650 |
|
7 |
|a Foliations (Mathematics)
|2 fast
|
650 |
|
7 |
|a Three-manifolds (Topology)
|2 fast
|
758 |
|
|
|i has work:
|a All compact orientable three dimensional manifolds admit total foliations (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGCtQW8RTQqjYBDtFDmDFX
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Hardorp, Detlef.
|t All compact orientable three dimensional manifolds admit total foliations /
|x 0065-9266
|z 9780821822333
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 233.
|x 0065-9266
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3113547
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35006284
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3113547
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10882206
|
938 |
|
|
|a Internet Archive
|b INAR
|n allcompactorient0026hard
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12303238
|
994 |
|
|
|a 92
|b IZTAP
|