|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn851087875 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
130627m19809999riu ob 000 0 eng d |
040 |
|
|
|a GZM
|b eng
|e pn
|c GZM
|d OCLCO
|d COO
|d UIU
|d E7B
|d OCLCF
|d LLB
|d OCLCQ
|d EBLCP
|d YDXCP
|d OCLCQ
|d STF
|d LEAUB
|d TXI
|d UKAHL
|d OCLCQ
|d K6U
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 851088185
|a 868212518
|a 922981198
|
020 |
|
|
|a 9781470406325
|
020 |
|
|
|a 1470406322
|
020 |
|
|
|a 9781470406813
|
020 |
|
|
|a 1470406810
|
020 |
|
|
|z 0821822284
|q (v. 1 ;
|q pbk.)
|
020 |
|
|
|z 9780821822289
|q (v. 1 ;
|q pbk.)
|
020 |
|
|
|z 9780821822715
|
020 |
|
|
|z 0821822713
|
029 |
1 |
|
|a AU@
|b 000069467958
|
035 |
|
|
|a (OCoLC)851087875
|z (OCoLC)851088185
|z (OCoLC)868212518
|z (OCoLC)922981198
|
037 |
|
|
|a MEMO/24/228
|b 00001436
|
050 |
|
4 |
|a QA3
|b .A57 no. 228, etc.
|a QA613.66
|
082 |
0 |
4 |
|a 510 s
|a 512/.4
|2 19
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Kochman, Stanley O.,
|d 1946-
|1 https://id.oclc.org/worldcat/entity/E39PCjvQVfRTbH9y9MJfPMHt8C
|
245 |
1 |
4 |
|a The symplectic cobordism ring /
|c Stanley O. Kochman.
|
260 |
|
|
|a Providence, R.I. :
|b American Mathematical Society,
|c 1980-<1982>
|
300 |
|
|
|a 1 online resource (volumes <1-2>)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society ;
|v v. 228, 271
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
0 |
|t 8. $d_3$ differentials on $E^{*,0}_3$ of the Adams spectral sequence
|t 9. A qualitative description of the Adams spectral sequence
|t 10. Cup-one products of manifolds with rigid $B$-structure
|t 11. Construction of a complex to represent an Adams spectral sequence
|t 12. Differentials, nontrivial extensions and Massey products
|t 13. $d_3$ differentials in the Adams spectral sequence.
|
520 |
|
|
|a This paper is the first of three which will investigate the ring of cobordism classes of closed smooth manifolds with a symplectic structure on their stable normal bundle. The method of computation is the Adams spectral sequence. In this paper, [italic]E₂ us computed as an algebra by the May spectral sequence. The [italic]d₂ differentials in the Adams spectral sequence are then found by Landweber-Novikov and matric Massey product methods. Algebra generators of [italic]E₃ are then determined.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Cobordism theory.
|
650 |
|
0 |
|a Rings (Algebra)
|
650 |
|
0 |
|a Adams spectral sequences.
|
650 |
|
0 |
|a Symplectic manifolds.
|
650 |
|
6 |
|a Théorie des cobordismes.
|
650 |
|
6 |
|a Anneaux (Algèbre)
|
650 |
|
6 |
|a Suites spectrales d'Adams.
|
650 |
|
6 |
|a Variétés symplectiques.
|
650 |
|
7 |
|a Adams spectral sequences
|2 fast
|
650 |
|
7 |
|a Cobordism theory
|2 fast
|
650 |
|
7 |
|a Rings (Algebra)
|2 fast
|
650 |
|
7 |
|a Symplectic manifolds
|2 fast
|
758 |
|
|
|i has work:
|a The symplectic cobordism ring (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGt4yH734bRy8ggG4vcPry
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Kochman, Stanley O., 1946-
|t Symplectic cobordism ring /
|x 0065-9266
|z 9780821822289
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 228, 271.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3113648
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35006279
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3113648
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10882307
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12303236
|
994 |
|
|
|a 92
|b IZTAP
|