|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn851087785 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un||||||||| |
007 |
cr ||||||||||| |
008 |
130627s1977 riu ob 000 0 eng d |
040 |
|
|
|a GZM
|b eng
|e pn
|c GZM
|d OCLCO
|d COO
|d UIU
|d E7B
|d OCLCF
|d LLB
|d EBLCP
|d OCLCQ
|d YDXCP
|d OCLCA
|d OCLCQ
|d LEAUB
|d UKAHL
|d OCLCQ
|d QGK
|d OCLCQ
|d REDDC
|d VT2
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCL
|
019 |
|
|
|a 1241828265
|a 1258908701
|a 1258948918
|a 1259217396
|a 1262688214
|a 1290104198
|a 1328966855
|
020 |
|
|
|a 9781470401566
|
020 |
|
|
|a 1470401568
|
020 |
|
|
|z 0821821954
|
020 |
|
|
|z 9780821821954
|
029 |
1 |
|
|a AU@
|b 000056872502
|
035 |
|
|
|a (OCoLC)851087785
|z (OCoLC)1241828265
|z (OCoLC)1258908701
|z (OCoLC)1258948918
|z (OCoLC)1259217396
|z (OCoLC)1262688214
|z (OCoLC)1290104198
|z (OCoLC)1328966855
|
050 |
|
4 |
|a QA3
|b .A57 no. 195
|a QA312
|
082 |
0 |
4 |
|a 510/.8 s
|a 515/.42
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Graves, William H.
|q (William Howard),
|d 1940-2016.
|1 https://id.oclc.org/worldcat/entity/E39PCjqM8tXmMTYRXJtrq998VK
|
245 |
1 |
0 |
|a On the theory of vector measures /
|c William H. Graves.
|
260 |
|
|
|a Providence :
|b American Mathematical Society,
|c 1977.
|
300 |
|
|
|a 1 online resource (iv, 72 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v v. 195
|
500 |
|
|
|a "Volume 12, issue 2."
|
504 |
|
|
|a Includes bibliographical references (pages 71-72).
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
0 |
|t 0. Background
|t 1. Notation, definitions, and introduction
|t 2. Boundedness in $S^\tau (\mathcal {R})$
|t 3. $\beta (S^\tau (\mathcal {R})^*, S(\mathcal {R}))$ is the topology of the variation norm
|t 4. Uniform strong boundedness and $\tau $-equicontinuity
|t 5. Buck's $(\ell ^\infty, \beta)$ as an example of $\widehat {S^\tau (\mathcal {R})}$
|t 6. An extension theorem
|t 7. Every $\sigma $-ideal determines a decomposition of $\operatorname {sca}(\mathcal {R}, W)$
|t 8. $\widehat {S^\tau (\mathcal {R})}$ as a projective limit
|t 9. $\widehat {S^\tau (\mathcal {R}/\mu)}$ and the Radon-Nikodym theorem
|t 10. Semi-reflexivity of $\widehat {S^\tau (\mathcal {R})}$ and the range of a vector measure
|t 11. $\sigma (S^\tau (\mathcal {R})^*, \widehat {S^\tau (\mathcal {R})})$-compactness, the Bartle-Dunford-Schwartz theorem, and Orlicz-Pettis-type theorems
|t 12. Applications to measure theory for (abstract) Boolean algebras.
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Measure theory.
|
650 |
|
0 |
|a Duality theory (Mathematics)
|
650 |
|
0 |
|a Vector-valued measures.
|
650 |
|
6 |
|a Théorie de la mesure.
|
650 |
|
6 |
|a Principe de dualité (Mathématiques)
|
650 |
|
6 |
|a Mesures vectorielles.
|
650 |
|
7 |
|a Duality theory (Mathematics)
|2 fast
|
650 |
|
7 |
|a Measure theory
|2 fast
|
650 |
|
7 |
|a Vector-valued measures
|2 fast
|
758 |
|
|
|i has work:
|a On the theory of vector measures (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGPmF6QMRfrbtCCrrKRk6q
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Graves, William Howard, 1940-
|t On the theory of vector measures /
|x 0065-9266
|z 9780821821954
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 195.
|x 0065-9266
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3113449
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35005818
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3113449
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10882108
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12303212
|
994 |
|
|
|a 92
|b IZTAP
|