Forme de Jordan de la monodromie des singuarités superisolées de surfaces /
In this work, Artal-Bartolo calculates the Jordan form of the monodromy of surface superisolated singularities, using mixed Hodge structure. The main step in this computation is to present explicitly an embedded resolution for this family. It turns out that the topology of these singularities is suf...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Francés |
Publicado: |
Providence, R.I. :
American Mathematical Society,
©1994.
|
Colección: | Memoirs of the American Mathematical Society ;
no. 525. |
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | In this work, Artal-Bartolo calculates the Jordan form of the monodromy of surface superisolated singularities, using mixed Hodge structure. The main step in this computation is to present explicitly an embedded resolution for this family. It turns out that the topology of these singularities is sufficiently complicated to produce counterexamples to a conjecture of Yau, using the theory of projective plane curves. |
---|---|
Notas: | "May 1994, volume 109, number 525 (end of volume)." |
Descripción Física: | 1 online resource (viii, 84 pages) : illustrations |
Bibliografía: | Includes bibliographical references (pages 81-84). |
ISBN: | 9781470401023 1470401029 |
ISSN: | 1947-6221 ; 0065-9266 |