|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn851087178 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
130627s1987 riua ob 000 0 eng d |
040 |
|
|
|a GZM
|b eng
|e pn
|c GZM
|d OCLCO
|d COO
|d UIU
|d OCLCF
|d N$T
|d LLB
|d YDXCP
|d E7B
|d OCLCQ
|d EBLCP
|d OCLCQ
|d UKAHL
|d OCLCQ
|d LEAUB
|d OCLCQ
|d VT2
|d K6U
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 891385400
|a 922981459
|a 1086419815
|a 1262669372
|
020 |
|
|
|a 9781470407834
|q (electronic bk.)
|
020 |
|
|
|a 1470407833
|q (electronic bk.)
|
020 |
|
|
|z 0821824295
|
020 |
|
|
|z 9780821824290
|
035 |
|
|
|a (OCoLC)851087178
|z (OCoLC)891385400
|z (OCoLC)922981459
|z (OCoLC)1086419815
|z (OCoLC)1262669372
|
050 |
|
4 |
|a QA3
|b .A57 no. 367
|a QA171
|
072 |
|
7 |
|a MAT
|x 039000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 023000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 026000
|2 bisacsh
|
082 |
0 |
4 |
|a 510 s
|a 512/.2
|2 19
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Enright, Thomas J.
|
245 |
1 |
0 |
|a Categories of highest weight modules :
|b applications to classical Hermitian symmetric pairs /
|c Thomas J. Enright and Brad Shelton.
|
260 |
|
|
|a Providence, Rhode Island, USA :
|b American Mathematical Society,
|c 1987.
|
300 |
|
|
|a 1 online resource (iv, 94 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v v. 367
|
500 |
|
|
|a "May 1987, vol. 67, no. 367 (end of volume)."
|
504 |
|
|
|a Includes bibliographical references (pages 91-94).
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
0 |
|t 1. Introduction and summary of results
|t Part I
|t 2. Notation
|t 3. Preliminary results
|t 4. Reduction of singularities
|t 5. The Zuckerman derived functors
|t 6. An equivalence of categories
|t 7. A second equivalence of categories
|t Part II. Highest weight modules for Hermitian symmetric pairs
|t 8. Statement of the main results
|t 9. Additional notation and preliminary results
|t 10. Wall shifting
|t 11. Induction from lower rank
|t 12. Proof of Theorem 8.4
|t 13. Proof of Theorem 8.5
|t 14. Projective resolutions and Ext
|t 15. Kazhdan-Lusztig polynomials
|t 16. Decompositions of $U(\underline {u}^- )$-free self-dual $\underline {g}$-modules.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Modular representations of groups.
|
650 |
|
0 |
|a Semisimple Lie groups.
|
650 |
|
0 |
|a Verma modules.
|
650 |
|
0 |
|a Kazhdan-Lusztig polynomials.
|
650 |
|
6 |
|a Représentations modulaires de groupes.
|
650 |
|
6 |
|a Groupes de Lie semi-simples.
|
650 |
|
6 |
|a Modules de Verma.
|
650 |
|
6 |
|a Polynômes de Kazhdan-Lusztig.
|
650 |
|
7 |
|a MATHEMATICS
|x Essays.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Pre-Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Reference.
|2 bisacsh
|
650 |
|
7 |
|a Kazhdan-Lusztig polynomials
|2 fast
|
650 |
|
7 |
|a Modular representations of groups
|2 fast
|
650 |
|
7 |
|a Semisimple Lie groups
|2 fast
|
650 |
|
7 |
|a Verma modules
|2 fast
|
700 |
1 |
|
|a Shelton, Brad,
|d 1958-
|1 https://id.oclc.org/worldcat/entity/E39PCjK4q7CKHbVDyQBjFKRrhd
|
758 |
|
|
|i has work:
|a Categories of highest weight modules (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFJhqrMd6TFJ7fcdk3XV3P
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Enright, Thomas J.
|t Categories of highest weight modules :
|x 0065-9266
|z 9780821824290
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 367.
|x 0065-9266
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3113997
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35006418
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3113997
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10918950
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 838431
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12055375
|
994 |
|
|
|a 92
|b IZTAP
|