|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn851087121 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
130627s1984 riu ob 000 0 eng d |
040 |
|
|
|a GZM
|b eng
|e pn
|c GZM
|d OCLCO
|d COO
|d UIU
|d E7B
|d OCLCF
|d LLB
|d YDXCP
|d EBLCP
|d OCLCQ
|d AU@
|d LEAUB
|d UKAHL
|d OCLCQ
|d QGK
|d OCLCQ
|d REDDC
|d VT2
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1058473186
|a 1097155898
|a 1241842717
|a 1258905068
|a 1258949513
|a 1262683222
|a 1290115642
|
020 |
|
|
|a 9781470406998
|
020 |
|
|
|a 1470406993
|
020 |
|
|
|z 0821822896
|q (pbk.)
|
020 |
|
|
|z 9780821822890
|q (pbk.)
|
029 |
1 |
|
|a AU@
|b 000056678052
|
035 |
|
|
|a (OCoLC)851087121
|z (OCoLC)1058473186
|z (OCoLC)1097155898
|z (OCoLC)1241842717
|z (OCoLC)1258905068
|z (OCoLC)1258949513
|z (OCoLC)1262683222
|z (OCoLC)1290115642
|
050 |
|
4 |
|a QA3
|b .A57 no. 289
|a QA614.83
|
082 |
0 |
4 |
|a 510 s
|a 514/.7
|2 19
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Eckmann, Jean Pierre.
|
245 |
1 |
2 |
|a A computer-assisted proof of universality for area-preserving maps /
|c J.-P. Eckmann, H. Koch, and P. Wittwer.
|
260 |
|
|
|a Providence, R.I., USA :
|b American Mathematical Society,
|c ©1984.
|
300 |
|
|
|a 1 online resource (vi, 121 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v v. 289
|
500 |
|
|
|a "January 1984, volume 47, number 289 (first of six numbers)."
|
504 |
|
|
|a Includes bibliographical references (page 121).
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
0 |
|t Introduction
|t Part I. Analysis of doubling
|t 1. Feigenbaum universality for area-preserving maps
|t 2. Generating functions
|t 3. Further reduction of the problem
|t 4. Spectral properties
|t 5. Construction of the operator $\mathcal {L}$
|t 6. Construction of the doubling operator
|t Part II. Functional analysis on the computer
|t 1. Interval and neighborhood arithmetics
|t 2. Spectral theory
|t 3. Interval and neighborhood arithmetics on a computer
|t List of correspondence
|t Part III. Proofs
|t 1. Computer program
|t 2. Program output.
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Hamiltonian systems
|x Data processing.
|
650 |
|
0 |
|a Mappings (Mathematics)
|x Data processing.
|
650 |
|
0 |
|a Error analysis (Mathematics)
|
650 |
|
6 |
|a Systèmes hamiltoniens
|x Informatique.
|
650 |
|
6 |
|a Applications (Mathématiques)
|x Informatique.
|
650 |
|
6 |
|a Théorie des erreurs.
|
650 |
|
7 |
|a Error analysis (Mathematics)
|2 fast
|
650 |
|
7 |
|a Hamiltonian systems
|x Data processing
|2 fast
|
650 |
|
7 |
|a Mappings (Mathematics)
|x Data processing
|2 fast
|
700 |
1 |
|
|a Koch, H.
|q (Hans)
|1 https://id.oclc.org/worldcat/entity/E39PCjMcXPB9y8fHrxcdq6x7HC
|
700 |
1 |
|
|a Wittwer, P.
|q (Peter)
|1 https://id.oclc.org/worldcat/entity/E39PCjCjv8yCMmWqgJdp4t4qpP
|
758 |
|
|
|i has work:
|a A computer-assisted proof of universality for area-preserving maps (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGCVWCmYcbCPgJ8tpfP38K
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Eckmann, Jean Pierre.
|t Computer-assisted proof of universality for area-preserving maps /
|x 0065-9266
|z 9780821822890
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 289.
|x 0065-9266
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3113731
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35006340
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3113731
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10882390
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11898313
|
994 |
|
|
|a 92
|b IZTAP
|