|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn851087112 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
130627s1983 riu ob 000 0 eng d |
040 |
|
|
|a GZM
|b eng
|e pn
|c GZM
|d OCLCO
|d COO
|d UIU
|d E7B
|d OCLCF
|d YDXCP
|d EBLCP
|d OCLCQ
|d AU@
|d LEAUB
|d TXI
|d UKAHL
|d OCLCQ
|d QGK
|d OCLCQ
|d REDDC
|d K6U
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1058535659
|a 1097140334
|a 1241956539
|a 1258911242
|a 1258948640
|a 1290079302
|
020 |
|
|
|a 9781470406912
|
020 |
|
|
|a 1470406918
|
020 |
|
|
|z 0821822810
|q (pbk.)
|
020 |
|
|
|z 9780821822814
|q (pbk.)
|
029 |
1 |
|
|a AU@
|b 000056872391
|
035 |
|
|
|a (OCoLC)851087112
|z (OCoLC)1058535659
|z (OCoLC)1097140334
|z (OCoLC)1241956539
|z (OCoLC)1258911242
|z (OCoLC)1258948640
|z (OCoLC)1290079302
|
050 |
|
4 |
|a QA3
|b .A57 no. 281
|a QA927
|
082 |
0 |
4 |
|a 510 s
|a 531/.1133
|2 19
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Majda, Andrew,
|d 1949-
|1 https://id.oclc.org/worldcat/entity/E39PBJfcPB3xmBKqhWMvg73xXd
|
245 |
1 |
4 |
|a The existence of multi-dimensional shock fronts /
|c Andrew Majda.
|
260 |
|
|
|a Providence, R.I. :
|b American Mathematical Society,
|c ©1983.
|
300 |
|
|
|a 1 online resource (v, 93 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v v. 281
|
504 |
|
|
|a Includes bibliographical references (page 93).
|
505 |
0 |
|
|a Introduction -- Structural conditions and shock front initial data : some preliminary facts -- The map to a fixed domain, compatibility conditions, and an approximate solution -- The iteration scheme -- Convergence of the iteration scheme -- The main linear estimate -- Appendix. Nonlinear calculus inequalities on Sobolev spaces weighted with time.
|
520 |
|
|
|a The short-time existence of discontinuous shock front solutions of a system of conservation laws in several space variables is proved below under suitable hypotheses. These shock front solutions are nonlinear progressing wave solutions associated with the nonlinear wave fields. The results developed here apply to the equations of compressible fluid flow in two or three space variables with standard equations of state where the initial data can have shock discontinuities of arbitrary strength which lie on a given smooth initial surface with arbitrary geometry.
|
588 |
0 |
|
|a Print version record.
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Shock waves.
|
650 |
|
0 |
|a Differential equations, Hyperbolic
|x Numerical solutions.
|
650 |
|
0 |
|a Conservation laws (Physics)
|
650 |
|
6 |
|a Ondes de choc.
|
650 |
|
6 |
|a Équations différentielles hyperboliques
|x Solutions numériques.
|
650 |
|
6 |
|a Lois de conservation (Physique)
|
650 |
|
7 |
|a Conservation laws (Physics)
|2 fast
|
650 |
|
7 |
|a Differential equations, Hyperbolic
|x Numerical solutions
|2 fast
|
650 |
|
7 |
|a Shock waves
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Majda, Andrew, 1949-
|t Existence of multi-dimensional shock fronts /
|x 0065-9266
|z 9780821822814
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 281.
|x 0065-9266
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3113596
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35006332
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3113596
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10882255
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11898306
|
994 |
|
|
|a 92
|b IZTAP
|