|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn851087014 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
130627s1979 riua ob 000 0 eng d |
040 |
|
|
|a GZM
|b eng
|e pn
|c GZM
|d OCLCO
|d COO
|d OCLCA
|d UIU
|d E7B
|d OCLCF
|d LLB
|d YDXCP
|d EBLCP
|d OCLCQ
|d AU@
|d TXI
|d LEAUB
|d UKAHL
|d OCLCQ
|d QGK
|d OCLCQ
|d REDDC
|d K6U
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1058580487
|a 1097109011
|a 1241957976
|a 1258907614
|a 1258948967
|a 1290100317
|
020 |
|
|
|a 9781470406028
|
020 |
|
|
|a 1470406020
|
020 |
|
|
|z 0821822217
|
020 |
|
|
|z 9780821822210
|
029 |
1 |
|
|a AU@
|b 000056678049
|
035 |
|
|
|a (OCoLC)851087014
|z (OCoLC)1058580487
|z (OCoLC)1097109011
|z (OCoLC)1241957976
|z (OCoLC)1258907614
|z (OCoLC)1258948967
|z (OCoLC)1290100317
|
050 |
|
4 |
|a QA3
|b .A57 no. 221
|a QA612.3
|
082 |
0 |
4 |
|a 510/.8 s
|a 514/.23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Snaith, Victor P.
|q (Victor Percy),
|d 1944-
|1 https://id.oclc.org/worldcat/entity/E39PBJj4rpF9hJ3wCPbHJ9Btrq
|
245 |
1 |
0 |
|a Algebraic cobordism and K-theory /
|c Victor P. Snaith.
|
260 |
|
|
|a Providence, R.I. :
|b American Mathematical Society,
|c 1979.
|
300 |
|
|
|a 1 online resource (vii, 152 pages) :
|b illustrations, tables
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v v. 221
|
504 |
|
|
|a Includes footnotes (pages 150-152), bibliographical references (pages 144-149).
|
505 |
0 |
0 |
|g Part I.
|t Cobordism and the stable homotopy of classifying spaces --
|g Part II.
|t A new representation of unitary and symplectic cobordism --
|g Part III.
|t Unoriented cobordism, algebraic cobordism and the [italic]X([italic]b)-spectrum --
|g Part IV.
|t Algebraic cobordism and geometry.
|
520 |
|
|
|a A decomposition is given of the S-type of the classifying spaces of the classical groups. This decomposition is in terms of Thom spaces and by means of it cobordism groups are embedded into the stable homotopy of classifying spaces. This is used to show that each of the classical cobordism theories, and also complex K-theory, is obtainable as a localization of the stable homotopy ring of a classifying space.
|
588 |
0 |
|
|a Print version record.
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Cobordism theory.
|
650 |
|
0 |
|a K-theory.
|
650 |
|
0 |
|a Homotopy theory.
|
650 |
|
6 |
|a Théorie des cobordismes.
|
650 |
|
6 |
|a K-théorie.
|
650 |
|
6 |
|a Homotopie.
|
650 |
|
7 |
|a Cobordism theory
|2 fast
|
650 |
|
7 |
|a Homotopy theory
|2 fast
|
650 |
|
7 |
|a K-theory
|2 fast
|
758 |
|
|
|i has work:
|a Algebraic cobordism and K-theory (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFXwPv3PRYbyPrpXV6Pd43
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Snaith, V.P. 1944-
|t Algebraic cobordism and K-theory /
|x 0065-9266
|z 9780821822210
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 221.
|x 0065-9266
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3113568
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35006250
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3113568
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10882227
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11898288
|
994 |
|
|
|a 92
|b IZTAP
|