|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn851086289 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
130627s2006 riua ob 000 0 eng d |
040 |
|
|
|a GZM
|b eng
|e pn
|c GZM
|d OCLCO
|d COO
|d UIU
|d OCLCF
|d LLB
|d E7B
|d OCLCQ
|d EBLCP
|d DEBSZ
|d YDXCP
|d OCLCQ
|d UKAHL
|d OCLCQ
|d LEAUB
|d OCLCQ
|d VT2
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 908039386
|a 922981580
|a 1086457844
|
020 |
|
|
|a 9781470404628
|
020 |
|
|
|a 1470404621
|
020 |
|
|
|z 9780821839102
|
020 |
|
|
|z 0821839101
|
029 |
1 |
|
|a AU@
|b 000062344139
|
029 |
1 |
|
|a AU@
|b 000069467178
|
029 |
1 |
|
|a DEBSZ
|b 452551188
|
035 |
|
|
|a (OCoLC)851086289
|z (OCoLC)908039386
|z (OCoLC)922981580
|z (OCoLC)1086457844
|
050 |
|
4 |
|a QA3
|b .A57 no. 858
|a QA641
|
082 |
0 |
4 |
|a 510 s 515/.39
|2 22
|
084 |
|
|
|a 31.52
|2 bcl
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Valdinoci, Enrico,
|d 1974-
|1 https://id.oclc.org/worldcat/entity/E39PBJp9xc8FgrdtmvWymDpwYP
|
245 |
1 |
0 |
|a Flat level set regularity of p-Laplace phase transitions /
|c Enrico Valdinoci, Berardino Sciunzi, Vasile Ovidiu Savin.
|
260 |
|
|
|a Providence, RI :
|b American Mathematical Society,
|c 2006.
|
300 |
|
|
|a 1 online resource (vi, 144 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v v. 858
|
500 |
|
|
|a "July 2006, volume 182, number 858 (second of 4 numbers)."
|
504 |
|
|
|a Includes bibliographical references (pages 143-144).
|
588 |
0 |
|
|a Print version record.
|
520 |
8 |
|
|a We prove a Harnack inequality for level sets of $p$-Laplace phase transition minimizers. In particular, if a level set is included in a flat cylinder, then, in the interior, it is included in a flatter one. The extension of a result conjectured by De Giorgi and recently proven by the third author for $p=2$ follows.
|
505 |
0 |
0 |
|t 1. Introduction
|t 2. Modifications of the potential and of one-dimensional solutions
|t 3. Geometry of the touching points
|t 4. Measure theoretic results
|t 5. Estimates on the measure of the projection of the contact set
|t 6. Proof of Theorem 1.1
|t 7. Proof of Theorem 1.2
|t 8. Proof of Theorem 1.3
|t 9. Proof of Theorem 1.4.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Geometry, Differential.
|
650 |
|
0 |
|a Laplacian operator.
|
650 |
|
0 |
|a Level set methods.
|
650 |
|
6 |
|a Géométrie différentielle.
|
650 |
|
6 |
|a Laplacien.
|
650 |
|
6 |
|a Méthodes d'ensembles de niveaux.
|
650 |
|
7 |
|a Geometry, Differential
|2 fast
|
650 |
|
7 |
|a Laplacian operator
|2 fast
|
650 |
|
7 |
|a Level set methods
|2 fast
|
700 |
1 |
|
|a Sciunzi, Berardino.
|
700 |
1 |
|
|a Savin, Vasile Ovidiu,
|d 1977-
|1 https://id.oclc.org/worldcat/entity/E39PBJpjd8PxQ4BDBr43fk3qQq
|
758 |
|
|
|i has work:
|a Flat level set regularity of p-Laplace phase transitions (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCH8GkwMGYypM96JGtFMGxP
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Valdinoci, Enrico, 1974-
|t Flat level set regularity of p-Laplace phase transitions /
|x 0065-9266
|z 9780821839102
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 858.
|x 0065-9266
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114056
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35006114
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3114056
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr11039675
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12371948
|
994 |
|
|
|a 92
|b IZTAP
|