Cargando…

Stability of spherically symmetric wave maps /

We study Wave Maps from ${\mathbf{R}} {2+1}$ to the hyperbolic plane ${\mathbf{H}} {2}$ with smooth compactly supported initial data which are close to smooth spherically symmetric initial data with respect to some $H {1+\mu}$, $\mu>0$. We show that such Wave Maps don't develop singularities...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Krieger, Joachim, 1976-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, R.I. : American Mathematical Society, 2006.
Colección:Memoirs of the American Mathematical Society ; no. 853.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn851086288
003 OCoLC
005 20240329122006.0
006 m o d
007 cr un|||||||||
008 130627s2006 riu ob 000 0 eng d
040 |a GZM  |b eng  |e pn  |c GZM  |d OCLCO  |d COO  |d UIU  |d OCLCF  |d N$T  |d LLB  |d YDXCP  |d E7B  |d OCLCQ  |d EBLCP  |d DEBSZ  |d OCLCQ  |d LEAUB  |d UKAHL  |d OCLCQ  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d INARC  |d OCLCO  |d OCLCL 
019 |a 908039627  |a 922981820 
020 |a 9781470404574  |q (electronic bk.) 
020 |a 1470404575  |q (electronic bk.) 
020 |z 0821838776  |q (alk. paper) 
020 |z 9780821838778  |q (alk. paper) 
029 1 |a AU@  |b 000062344348 
029 1 |a AU@  |b 000069467957 
029 1 |a DEBSZ  |b 452552184 
035 |a (OCoLC)851086288  |z (OCoLC)908039627  |z (OCoLC)922981820 
050 4 |a QA3  |b .A57 no. 853  |a QC174.26.W28 
072 7 |a MAT  |x 039000  |2 bisacsh 
072 7 |a MAT  |x 023000  |2 bisacsh 
072 7 |a MAT  |x 026000  |2 bisacsh 
082 0 4 |a 510 s  |a 530.12/4  |2 22 
084 |a 31.45  |2 bcl 
049 |a UAMI 
100 1 |a Krieger, Joachim,  |d 1976-  |1 https://id.oclc.org/worldcat/entity/E39PBJyGQvjJ6WYJXgp78HpkjC 
245 1 0 |a Stability of spherically symmetric wave maps /  |c Joachim Krieger. 
260 |a Providence, R.I. :  |b American Mathematical Society,  |c 2006. 
300 |a 1 online resource (vii, 80 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 1947-6221 ;  |v v. 853 
500 |a "Volume 181, number 853 (second of 5 numbers)." 
504 |a Includes bibliographical references. 
588 0 |a Print version record. 
505 0 0 |t 1. Introduction, controlling spherically symmetric wave maps  |t 2. Technical preliminaries. Proofs of main theorems  |t 3. The proof of Proposition 2.2  |t 4. Proof of Theorem 2.3. 
520 |a We study Wave Maps from ${\mathbf{R}} {2+1}$ to the hyperbolic plane ${\mathbf{H}} {2}$ with smooth compactly supported initial data which are close to smooth spherically symmetric initial data with respect to some $H {1+\mu}$, $\mu>0$. We show that such Wave Maps don't develop singularities in finite time and stay close to the Wave Map extending the spherically symmetric data(whose existence is ensured by a theorem of Christodoulou-Tahvildar-Zadeh) with respect to all $H {1+\delta}, \delta\less\mu_{0}$ for suitable $\mu_{0}(\mu)>0$. We obtain a similar result for Wave Maps whose initial data are close to geodesic ones. This strengthens a theorem of Sideris for this context. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Wave equation. 
650 0 |a Differential equations, Parabolic. 
650 6 |a Équations d'onde. 
650 6 |a Équations différentielles paraboliques. 
650 7 |a MATHEMATICS  |x Essays.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Pre-Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Reference.  |2 bisacsh 
650 7 |a Differential equations, Parabolic  |2 fast 
650 7 |a Wave equation  |2 fast 
650 7 |a Wellengleichung  |2 gnd 
650 1 7 |a Parabolische differentiaalvergelijkingen.  |2 gtt 
650 1 7 |a Golfmechanica.  |2 gtt 
650 7 |a Análise matemática.  |2 larpcal 
650 7 |a Análise harmônica.  |2 larpcal 
776 0 8 |i Print version:  |a Krieger, Joachim, 1976-  |t Stability of spherically symmetric wave maps /  |x 0065-9266  |z 9780821838778 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 853.  |x 0065-9266 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114155  |z Texto completo 
938 |a Internet Archive  |b INAR  |n stabilityofspher0000krie 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35006109 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3114155 
938 |a ebrary  |b EBRY  |n ebr11039774 
938 |a EBSCOhost  |b EBSC  |n 843349 
938 |a YBP Library Services  |b YANK  |n 12081702 
994 |a 92  |b IZTAP