Stability of spherically symmetric wave maps /
We study Wave Maps from ${\mathbf{R}} {2+1}$ to the hyperbolic plane ${\mathbf{H}} {2}$ with smooth compactly supported initial data which are close to smooth spherically symmetric initial data with respect to some $H {1+\mu}$, $\mu>0$. We show that such Wave Maps don't develop singularities...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, R.I. :
American Mathematical Society,
2006.
|
Colección: | Memoirs of the American Mathematical Society ;
no. 853. |
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | We study Wave Maps from ${\mathbf{R}} {2+1}$ to the hyperbolic plane ${\mathbf{H}} {2}$ with smooth compactly supported initial data which are close to smooth spherically symmetric initial data with respect to some $H {1+\mu}$, $\mu>0$. We show that such Wave Maps don't develop singularities in finite time and stay close to the Wave Map extending the spherically symmetric data(whose existence is ensured by a theorem of Christodoulou-Tahvildar-Zadeh) with respect to all $H {1+\delta}, \delta\less\mu_{0}$ for suitable $\mu_{0}(\mu)>0$. We obtain a similar result for Wave Maps whose initial data are close to geodesic ones. This strengthens a theorem of Sideris for this context. |
---|---|
Notas: | "Volume 181, number 853 (second of 5 numbers)." |
Descripción Física: | 1 online resource (vii, 80 pages) |
Bibliografía: | Includes bibliographical references. |
ISBN: | 9781470404574 1470404575 |
ISSN: | 1947-6221 ; 0065-9266 |