Cargando…

Stability of spherically symmetric wave maps /

We study Wave Maps from ${\mathbf{R}} {2+1}$ to the hyperbolic plane ${\mathbf{H}} {2}$ with smooth compactly supported initial data which are close to smooth spherically symmetric initial data with respect to some $H {1+\mu}$, $\mu>0$. We show that such Wave Maps don't develop singularities...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Krieger, Joachim, 1976-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, R.I. : American Mathematical Society, 2006.
Colección:Memoirs of the American Mathematical Society ; no. 853.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:We study Wave Maps from ${\mathbf{R}} {2+1}$ to the hyperbolic plane ${\mathbf{H}} {2}$ with smooth compactly supported initial data which are close to smooth spherically symmetric initial data with respect to some $H {1+\mu}$, $\mu>0$. We show that such Wave Maps don't develop singularities in finite time and stay close to the Wave Map extending the spherically symmetric data(whose existence is ensured by a theorem of Christodoulou-Tahvildar-Zadeh) with respect to all $H {1+\delta}, \delta\less\mu_{0}$ for suitable $\mu_{0}(\mu)>0$. We obtain a similar result for Wave Maps whose initial data are close to geodesic ones. This strengthens a theorem of Sideris for this context.
Notas:"Volume 181, number 853 (second of 5 numbers)."
Descripción Física:1 online resource (vii, 80 pages)
Bibliografía:Includes bibliographical references.
ISBN:9781470404574
1470404575
ISSN:1947-6221 ;
0065-9266