Cargando…

Relatively hyperbolic groups : intrinsic geometry, algebraic properties, and algorithmic problems /

In this paper we obtain an isoperimetric characterization of relatively hyperbolicity of a groups with respect to a collection of subgroups. This allows us to apply classical combinatorial methods related to van Kampen diagrams to obtain relative analogues of some well-known algebraic and geometric...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Osin, Denis V., 1974-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, R.I. : American Mathematical Society, 2006.
Colección:Memoirs of the American Mathematical Society ; no. 843.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:In this paper we obtain an isoperimetric characterization of relatively hyperbolicity of a groups with respect to a collection of subgroups. This allows us to apply classical combinatorial methods related to van Kampen diagrams to obtain relative analogues of some well-known algebraic and geometric properties of ordinary hyperbolic groups. We also introduce and study the notion of a relatively quasi-convex subgroup of a relatively hyperbolic group and solve some natural algorithmic problems.
Notas:"Volume 179, number 843 (second of 5 numbers)."
Descripción Física:1 online resource (vi, 100 pages) : illustrations
Bibliografía:Includes bibliographical references (pages 97-100).
ISBN:9781470404444
1470404443
ISSN:1947-6221 ;