|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn851086277 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
130627s2005 riua ob 000 0 eng d |
040 |
|
|
|a GZM
|b eng
|e pn
|c GZM
|d OCLCO
|d COO
|d UIU
|d OCLCF
|d LLB
|d E7B
|d OCLCQ
|d EBLCP
|d DEBSZ
|d YDXCP
|d OCLCQ
|d AU@
|d UKAHL
|d OCLCQ
|d LEAUB
|d VT2
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 908039550
|a 922981589
|a 1086542657
|
020 |
|
|
|a 9781470404406
|
020 |
|
|
|a 1470404400
|
020 |
|
|
|z 9780821837948
|
020 |
|
|
|z 082183794X
|
029 |
1 |
|
|a AU@
|b 000069467171
|
029 |
1 |
|
|a DEBSZ
|b 452551269
|
035 |
|
|
|a (OCoLC)851086277
|z (OCoLC)908039550
|z (OCoLC)922981589
|z (OCoLC)1086542657
|
050 |
|
4 |
|a QA3
|b .A57 no. 839
|a QA166.8
|
082 |
0 |
4 |
|a 510 s 537/.2
|2 22
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Ciucu, Mihai,
|d 1968-
|1 https://id.oclc.org/worldcat/entity/E39PCjGHMFQgWPG8yv4G9G9g4y
|
245 |
1 |
2 |
|a A random tiling model for two dimensional electrostatics /
|c Mihai Ciucu.
|
260 |
|
|
|a Providence, R.I. :
|b American Mathematical Society,
|c 2005.
|
300 |
|
|
|a 1 online resource (ix, 144 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v v. 839
|
500 |
|
|
|a "Volume 178, number 839 (third of 5 numbers)."
|
504 |
|
|
|a Includes bibliographical references (page 144).
|
588 |
0 |
|
|a Print version record.
|
520 |
8 |
|
|a Part A.A Random Tiling Model for Two Dimensional Electrostatics: Introduction Definitions, statement of results and physical interpretation Reduction to boundary-influenced correlations A simple product formula for correlations along the boundary A $(2m+2n)$-fold sum for $\omega_b$ Separation of the $(2m+2n)$-fold sum for $\omega_b$ in terms of $4mn$-fold integrals The asymptotics of the $T^{(n)}$'s and ${T'}^{(n)}$'s Replacement of the $T^{(k)}$'s and ${T'}^{(k)}$'s by their asymptotics Proof of Proposition 7.2 The asymptotics of a multidimensional Laplace integral The asymptotics of $\omega_b$. Proof of Theorem 2.2 Another simple product formula for correlations along the boundary The asymptotics of $\bar{\omega}_b$. Proof of Theorem 2.1 A conjectured general two dimensional Superposition Principle Three dimensions and concluding remarks Bibliography Part B. Plane Partitions I: A Generalization of MacMahon's Formula: Introduction Two families of regions Reduction to simply-connected regions Recurrences for $\textup{M}(R_{{\bf l}, {\bf q}}(x))$ and $\textup{M}(\bar{R}_{{\bf l}, {\bf q}}(x))$ Proof of Proposition 2.1 The guessing of $\textup{M}(R_{{\bf l}, {\bf q}}(x))$ and $\textup{M}(\bar{R}_{{\bf l}, {\bf q}}(x))$ Bibliography.
|
505 |
0 |
0 |
|t A random tiling model for two dimensional electrostatics
|t 1. Introduction
|t 2. Definitions, statement of results and physical interpretation
|t 3. Reduction to boundary-influenced correlations
|t 4. A simple product formula for correlations along the boundary
|t 5. A $(2m + 2n)$-fold sum for $\omega _b$
|t 6. Separation of the $(2m + 2n)$-fold sum for $\omega _b$ in terms of $4mn$-fold integrals
|t 7. The asymptotics of the $T^{(n)}$'s and $T'^{(n)}$'s
|t 8. Replacement of the $T^{(k)}$'s and $T'^{(k)}$'s by their asymptotics
|t 9. Proof of Proposition 7.2
|t 10. The asymptotics of a multidimensional Laplace integral
|t 11. The asymptotics of $\omega _b$. Proof of Theorem 2.2
|t 12. Another simple product formula for correlations along the boundary
|t 13. The asymptotics of $\bar {\omega }_b$. Proof of Theorem 2.1
|t 14. A conjectured general two dimensional superposition principle
|t 15. Three dimensions and concluding remarks
|t B. Plane partitions I: A generalization of MacMahon's formula
|t 1. Introduction
|t 2. Two families of regions
|t 3. Reduction to simply-connected regions
|t 4. Recurrences for $\mathrm {M}(R_{\mathbf {l}, \mathbf {q}}(x))$ and $\mathrm {M}(\bar {R}_{\mathbf {l}, \mathbf {q}}(x))$
|t 5. Proof of Proposition 2.1
|t 6. The guessing of $\mathrm {M}(R_{\mathbf {l}, \mathbf {q}}(x))$ and $\mathrm {M}(\bar {R}_{\mathbf {l}, \mathbf {q}}(x))$
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Tiling (Mathematics)
|
650 |
|
0 |
|a Electrostatics.
|
650 |
|
0 |
|a Statistical mechanics.
|
650 |
|
6 |
|a Pavage (Mathématiques)
|
650 |
|
6 |
|a Mécanique statistique.
|
650 |
|
7 |
|a Electrostatics
|2 fast
|
650 |
|
7 |
|a Statistical mechanics
|2 fast
|
650 |
|
7 |
|a Tiling (Mathematics)
|2 fast
|
758 |
|
|
|i has work:
|a A random tiling model for two dimensional electrostatics (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCH7vQwXTxT8dm9HqDBKMrq
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Ciucu, Mihai, 1968-
|t Random tiling model for two dimensional electrostatics /
|x 0065-9266
|z 9780821837948
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 839.
|x 0065-9266
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114064
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35006092
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3114064
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr11039683
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12371938
|
994 |
|
|
|a 92
|b IZTAP
|