Cargando…

Methods in the theory of hereditarily indecomposable Banach spaces /

Introduction General results about H.I. spaces Schreier families and repeated averages The space ${X= T [G, (\mathcal{S}_{n_j}, {\tfrac {1}{m_j})}_{j}, D]}$ and the auxiliary space ${T_{ad}}$ The basic inequality Special convex combinations in $X$ Rapidly increasing sequences Defining $D$ to obtain...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Argyros, S. (Spiros), 1950-
Otros Autores: Tolias, Andreas, 1974-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, R.I. : American Mathematical Society, ©2004.
Colección:Memoirs of the American Mathematical Society ; no. 806.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:Introduction General results about H.I. spaces Schreier families and repeated averages The space ${X= T [G, (\mathcal{S}_{n_j}, {\tfrac {1}{m_j})}_{j}, D]}$ and the auxiliary space ${T_{ad}}$ The basic inequality Special convex combinations in $X$ Rapidly increasing sequences Defining $D$ to obtain a H.I. space ${X_G}$ The predual ${(X_G)_*}$ of ${X_G}$ is also H.I. The structure of the space of operators ${\mathcal L}(X_G)$ Defining $G$ to obtain a nonseparable H.I. space ${X_G^*}$ Complemented embedding of ${\ell^p}, {1\le p <\infty}$, in the duals of H.I. spaces Compact families in $\mathbb{N}$ The space ${X_{G}=T[G, (\mathcal{S}_{\xi_j}, {\tfrac {1}{m_j})_{j}}, D]}$ for an ${\mathcal{S}_{\xi}}$ bounded set $G$ Quotients of H.I. spaces Bibliography.
Notas:"July 2004, Volume 170, Number 806 (third of 4 numbers)."
Descripción Física:1 online resource (vi, 114 pages)
Bibliografía:Includes bibliographical references (pages 113-114).
ISBN:9781470404079
1470404079
ISSN:1947-6221 ;
0065-9266