Methods in the theory of hereditarily indecomposable Banach spaces /
Introduction General results about H.I. spaces Schreier families and repeated averages The space ${X= T [G, (\mathcal{S}_{n_j}, {\tfrac {1}{m_j})}_{j}, D]}$ and the auxiliary space ${T_{ad}}$ The basic inequality Special convex combinations in $X$ Rapidly increasing sequences Defining $D$ to obtain...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, R.I. :
American Mathematical Society,
©2004.
|
Colección: | Memoirs of the American Mathematical Society ;
no. 806. |
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | Introduction General results about H.I. spaces Schreier families and repeated averages The space ${X= T [G, (\mathcal{S}_{n_j}, {\tfrac {1}{m_j})}_{j}, D]}$ and the auxiliary space ${T_{ad}}$ The basic inequality Special convex combinations in $X$ Rapidly increasing sequences Defining $D$ to obtain a H.I. space ${X_G}$ The predual ${(X_G)_*}$ of ${X_G}$ is also H.I. The structure of the space of operators ${\mathcal L}(X_G)$ Defining $G$ to obtain a nonseparable H.I. space ${X_G^*}$ Complemented embedding of ${\ell^p}, {1\le p <\infty}$, in the duals of H.I. spaces Compact families in $\mathbb{N}$ The space ${X_{G}=T[G, (\mathcal{S}_{\xi_j}, {\tfrac {1}{m_j})_{j}}, D]}$ for an ${\mathcal{S}_{\xi}}$ bounded set $G$ Quotients of H.I. spaces Bibliography. |
---|---|
Notas: | "July 2004, Volume 170, Number 806 (third of 4 numbers)." |
Descripción Física: | 1 online resource (vi, 114 pages) |
Bibliografía: | Includes bibliographical references (pages 113-114). |
ISBN: | 9781470404079 1470404079 |
ISSN: | 1947-6221 ; 0065-9266 |