Cargando…

Segre's reflexivity and an inductive characterization of hyperquadrics /

Introduction The universal pseudo-quotient for a family of subvarieties Normal bundles of quadrics in $X$ Morphisms from quadrics to Grassmannians Pointwise uniform vector bundles on non-singular quadrics Theory of extensions of families over Hilbert schemes Existence of algebraic quotient--proof of...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kachi, Yasuyuki, 1969-
Otros Autores: Sato, Eiichi, 1947-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, R.I. : American Mathematical Society, 2002.
Colección:Memoirs of the American Mathematical Society ; no. 763.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:Introduction The universal pseudo-quotient for a family of subvarieties Normal bundles of quadrics in $X$ Morphisms from quadrics to Grassmannians Pointwise uniform vector bundles on non-singular quadrics Theory of extensions of families over Hilbert schemes Existence of algebraic quotient--proof of Theorem 0.3 Appendix. Deformations of vector bundles on infinitesimally rigid projective varieties with null global $i$-forms References.
Notas:"Volume 160, number 763 (end of volume)."
Descripción Física:1 online resource (x, 116 pages) : illustrations
Bibliografía:Includes bibliographical references (pages 105-116).
ISBN:9781470403614
1470403617
ISSN:1947-6221 ;
0065-9266