Cargando…

An ergodic IP polynomial Szemerédi theorem /

Proves a polynomial multiple recurrence theorem for finitely, many commuting, measure-preserving transformations of a probability space, extending a polynomial Szemeredi theorem. Several applications to the structure of recurrence in ergodic theory are given, some of which involve weakly mixing syst...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bergelson, V. (Vitaly), 1950-
Otros Autores: McCutcheon, Randall, 1965-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, R.I. : American Mathematical Society, ©2000.
Colección:Memoirs of the American Mathematical Society ; no. 695.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn851086219
003 OCoLC
005 20240329122006.0
006 m o d
007 cr un|||||||||
008 130627s2000 riu ob 001 0 eng d
040 |a GZM  |b eng  |e pn  |c GZM  |d OCLCO  |d COO  |d UIU  |d OCLCF  |d LLB  |d E7B  |d OCLCQ  |d EBLCP  |d YDXCP  |d OCLCQ  |d LEAUB  |d AU@  |d UKAHL  |d OCLCQ  |d VT2  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 908039734  |a 922964952 
020 |a 9781470402860 
020 |a 1470402866 
020 |z 9780821826577 
020 |z 0821826573 
029 1 |a AU@  |b 000069467515 
035 |a (OCoLC)851086219  |z (OCoLC)908039734  |z (OCoLC)922964952 
050 4 |a QA3.A57 no. 695 +  |a QA313 
082 0 4 |a 510 s 515/.42  |2 21 
049 |a UAMI 
100 1 |a Bergelson, V.  |q (Vitaly),  |d 1950-  |1 https://id.oclc.org/worldcat/entity/E39PBJbCGWbqkqdWk3MBq4PqQq 
245 1 3 |a An ergodic IP polynomial Szemerédi theorem /  |c Vitaly Bergelson, Randall McCutcheon. 
260 |a Providence, R.I. :  |b American Mathematical Society,  |c ©2000. 
300 |a 1 online resource (viii, 106 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 1947-6221 ;  |v v. 695 
500 |a "July 2000, volume 146, number 695 (fourth of 5 numbers)." 
504 |a Includes bibliographical references (pages 103-104) and index. 
588 0 |a Print version record. 
520 8 |a Proves a polynomial multiple recurrence theorem for finitely, many commuting, measure-preserving transformations of a probability space, extending a polynomial Szemeredi theorem. Several applications to the structure of recurrence in ergodic theory are given, some of which involve weakly mixing systems, for which the authors also prove a multiparameter weakly mixing polynomial ergodic theorem. Techniques and apparatus employed include a polynomialization of an IP structure theory, an extension of Hindman's theorem due to Milliken and Taylor, a polynomial version of the Hales-Jewett coloring theorem, and a theorem concerning limits of polynomially generated IP systems of unitary operators. Author information is not given. Annotation copyrighted by Book News, Inc., Portland, OR. 
505 0 0 |t 0. Introduction  |t 1. Formulation of main theorem  |t 2. Preliminaries  |t 3. Primitive extensions  |t 4. Relative polynomial mixing  |t 5. Completion of the proof  |t 6. Measure-theoretic applications  |t 7. Combinatorial applications  |t 8. For future investigation. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Measure-preserving transformations. 
650 0 |a Ramsey theory. 
650 6 |a Transformations conservant la mesure. 
650 6 |a Théorie de Ramsey. 
650 7 |a Measure-preserving transformations  |2 fast 
650 7 |a Ramsey theory  |2 fast 
700 1 |a McCutcheon, Randall,  |d 1965-  |1 https://id.oclc.org/worldcat/entity/E39PBJkMJfhkD8CDBYGy7xpgKd 
776 0 8 |i Print version:  |a Bergelson, V. 1950-  |t Ergodic IP polynomial Szemerédi theorem /  |x 0065-9266  |z 9780821826577 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 695.  |x 0065-9266 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114517  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35005944 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3114517 
938 |a ebrary  |b EBRY  |n ebr11041295 
938 |a YBP Library Services  |b YANK  |n 12375411 
994 |a 92  |b IZTAP