|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn851086219 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
130627s2000 riu ob 001 0 eng d |
040 |
|
|
|a GZM
|b eng
|e pn
|c GZM
|d OCLCO
|d COO
|d UIU
|d OCLCF
|d LLB
|d E7B
|d OCLCQ
|d EBLCP
|d YDXCP
|d OCLCQ
|d LEAUB
|d AU@
|d UKAHL
|d OCLCQ
|d VT2
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 908039734
|a 922964952
|
020 |
|
|
|a 9781470402860
|
020 |
|
|
|a 1470402866
|
020 |
|
|
|z 9780821826577
|
020 |
|
|
|z 0821826573
|
029 |
1 |
|
|a AU@
|b 000069467515
|
035 |
|
|
|a (OCoLC)851086219
|z (OCoLC)908039734
|z (OCoLC)922964952
|
050 |
|
4 |
|a QA3.A57 no. 695 +
|a QA313
|
082 |
0 |
4 |
|a 510 s 515/.42
|2 21
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Bergelson, V.
|q (Vitaly),
|d 1950-
|1 https://id.oclc.org/worldcat/entity/E39PBJbCGWbqkqdWk3MBq4PqQq
|
245 |
1 |
3 |
|a An ergodic IP polynomial Szemerédi theorem /
|c Vitaly Bergelson, Randall McCutcheon.
|
260 |
|
|
|a Providence, R.I. :
|b American Mathematical Society,
|c ©2000.
|
300 |
|
|
|a 1 online resource (viii, 106 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v v. 695
|
500 |
|
|
|a "July 2000, volume 146, number 695 (fourth of 5 numbers)."
|
504 |
|
|
|a Includes bibliographical references (pages 103-104) and index.
|
588 |
0 |
|
|a Print version record.
|
520 |
8 |
|
|a Proves a polynomial multiple recurrence theorem for finitely, many commuting, measure-preserving transformations of a probability space, extending a polynomial Szemeredi theorem. Several applications to the structure of recurrence in ergodic theory are given, some of which involve weakly mixing systems, for which the authors also prove a multiparameter weakly mixing polynomial ergodic theorem. Techniques and apparatus employed include a polynomialization of an IP structure theory, an extension of Hindman's theorem due to Milliken and Taylor, a polynomial version of the Hales-Jewett coloring theorem, and a theorem concerning limits of polynomially generated IP systems of unitary operators. Author information is not given. Annotation copyrighted by Book News, Inc., Portland, OR.
|
505 |
0 |
0 |
|t 0. Introduction
|t 1. Formulation of main theorem
|t 2. Preliminaries
|t 3. Primitive extensions
|t 4. Relative polynomial mixing
|t 5. Completion of the proof
|t 6. Measure-theoretic applications
|t 7. Combinatorial applications
|t 8. For future investigation.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Measure-preserving transformations.
|
650 |
|
0 |
|a Ramsey theory.
|
650 |
|
6 |
|a Transformations conservant la mesure.
|
650 |
|
6 |
|a Théorie de Ramsey.
|
650 |
|
7 |
|a Measure-preserving transformations
|2 fast
|
650 |
|
7 |
|a Ramsey theory
|2 fast
|
700 |
1 |
|
|a McCutcheon, Randall,
|d 1965-
|1 https://id.oclc.org/worldcat/entity/E39PBJkMJfhkD8CDBYGy7xpgKd
|
776 |
0 |
8 |
|i Print version:
|a Bergelson, V. 1950-
|t Ergodic IP polynomial Szemerédi theorem /
|x 0065-9266
|z 9780821826577
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 695.
|x 0065-9266
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114517
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35005944
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3114517
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr11041295
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12375411
|
994 |
|
|
|a 92
|b IZTAP
|