Cargando…

An ergodic IP polynomial Szemerédi theorem /

Proves a polynomial multiple recurrence theorem for finitely, many commuting, measure-preserving transformations of a probability space, extending a polynomial Szemeredi theorem. Several applications to the structure of recurrence in ergodic theory are given, some of which involve weakly mixing syst...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bergelson, V. (Vitaly), 1950-
Otros Autores: McCutcheon, Randall, 1965-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, R.I. : American Mathematical Society, ©2000.
Colección:Memoirs of the American Mathematical Society ; no. 695.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:Proves a polynomial multiple recurrence theorem for finitely, many commuting, measure-preserving transformations of a probability space, extending a polynomial Szemeredi theorem. Several applications to the structure of recurrence in ergodic theory are given, some of which involve weakly mixing systems, for which the authors also prove a multiparameter weakly mixing polynomial ergodic theorem. Techniques and apparatus employed include a polynomialization of an IP structure theory, an extension of Hindman's theorem due to Milliken and Taylor, a polynomial version of the Hales-Jewett coloring theorem, and a theorem concerning limits of polynomially generated IP systems of unitary operators. Author information is not given. Annotation copyrighted by Book News, Inc., Portland, OR.
Notas:"July 2000, volume 146, number 695 (fourth of 5 numbers)."
Descripción Física:1 online resource (viii, 106 pages)
Bibliografía:Includes bibliographical references (pages 103-104) and index.
ISBN:9781470402860
1470402866
ISSN:1947-6221 ;
0065-9266