|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn851086211 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
130627s1999 riu ob 000 0 eng d |
040 |
|
|
|a GZM
|b eng
|e pn
|c GZM
|d OCLCO
|d COO
|d UIU
|d OCLCF
|d N$T
|d LLB
|d YDXCP
|d OCLCQ
|d EBLCP
|d OCLCQ
|d LEAUB
|d UKAHL
|d OCLCQ
|d K6U
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d INARC
|d OCLCL
|
019 |
|
|
|a 922981920
|
020 |
|
|
|a 9781470402495
|q (electronic bk.)
|
020 |
|
|
|a 1470402491
|q (electronic bk.)
|
020 |
|
|
|z 082180961X
|q (alk. paper)
|
020 |
|
|
|z 9780821809617
|q (alk. paper)
|
029 |
1 |
|
|a AU@
|b 000069468066
|
035 |
|
|
|a (OCoLC)851086211
|z (OCoLC)922981920
|
050 |
|
4 |
|a QA3
|b .A57 no. 660
|a QA323
|
072 |
|
7 |
|a MAT
|x 039000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 023000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 026000
|2 bisacsh
|
082 |
0 |
4 |
|a 510 s
|a 515/.73
|2 21
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Alspach, Dale E.
|q (Dale Edward),
|d 1950-
|1 https://id.oclc.org/worldcat/entity/E39PCjyjVgt4pcQQggFY9rcc6C
|
245 |
1 |
0 |
|a Tensor products and independent sums of Lp-spaces, 1[p[[infinity] /
|c Dale E. Alspach.
|
260 |
|
|
|a Providence, R.I. :
|b American Mathematical Society,
|c 1999.
|
300 |
|
|
|a 1 online resource (viii, 77 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v v. 660
|
500 |
|
|
|a On t.p. "[infinity]" appears as the infinity symbol.
|
500 |
|
|
|a "Volume 138, number 660 (third of 4 numbers)."
|
504 |
|
|
|a Includes bibliographical references (pages 76-77).
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
0 |
|t 0. Introduction
|t 1. The constructions of $\mathcal {L}_p$-spaces
|t 2. Isomorphic properties of $(p, 2)$-sums and the spaces $R^\alpha _p$
|t 3. Isomorphic classification of $R^\alpha _p$, $\alpha <\omega _1$
|t 4. Isomorphism from $X_p \otimes X_p$ into $(p, 2)$-sums
|t 5. Selection of bases in $X_p \otimes X_p$
|t 6. $X_p \otimes X_p$-preserving operators on $X_p \otimes X_p$
|t 7. Isomorphisms of $X_p \otimes X_p$ onto complemented subspaces of $(p, 2)$-sums
|t 8. $X_p \otimes X_p$ is not in the scale $R^\alpha _p$, $\alpha <\omega _1$
|t 9. Final remarks and open problems.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Lp spaces.
|
650 |
|
0 |
|a Tensor products.
|
650 |
|
6 |
|a Espaces Lp.
|
650 |
|
6 |
|a Produits tensoriels.
|
650 |
|
7 |
|a MATHEMATICS
|x Essays.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Pre-Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Reference.
|2 bisacsh
|
650 |
|
7 |
|a Lp spaces
|2 fast
|
650 |
|
7 |
|a Tensor products
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Alspach, Dale E. 1950-
|t Tensor products and independent sums of Lp-spaces, 1<p<[infinity] /
|x 0065-9266
|z 9780821809617
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 660.
|x 0065-9266
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114389
|z Texto completo
|
938 |
|
|
|a Internet Archive
|b INAR
|n tensorproductsin0000alsp
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35005908
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3114389
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 843162
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12081656
|
994 |
|
|
|a 92
|b IZTAP
|