Cargando…

Algebraic potential theory /

Global aspects of classical and axiomatic potential theory are developed in a purely algebraic way, in terms of a new algebraic structure called a mixed lattice semigroup. This generalizes the notion of a Riesz space (vector lattice) by replacing the usual symmetrical lower and upper envelopes by un...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Arsove, Maynard, 1922-, Leutwiler, Heinz, 1939- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, R.I. : American Mathematical Society, 1980.
Colección:Memoirs of the American Mathematical Society ; no. 226.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn851086031
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
007 cr un|||||||||
008 130627s1980 riua ob 000 0 eng d
040 |a GZM  |b eng  |e pn  |c GZM  |d OCLCO  |d COO  |d UIU  |d E7B  |d OCLCF  |d LLB  |d YDXCP  |d OCLCQ  |d EBLCP  |d OCLCO  |d OCLCQ  |d LEAUB  |d UKAHL  |d OCLCQ  |d TXI  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 922981079 
020 |a 9781470406301 
020 |a 1470406306 
020 |z 0821822268 
020 |z 9780821822265 
029 1 |a AU@  |b 000069466715 
035 |a (OCoLC)851086031  |z (OCoLC)922981079 
050 4 |a QA3  |b .A57 no. 226  |a QA322 
082 0 4 |a 510/.8 s  |a 515/.73 
049 |a UAMI 
100 1 |a Arsove, Maynard,  |d 1922-  |1 https://id.oclc.org/worldcat/entity/E39PCjyHG3q9vv68VPvkfyyYbm 
245 1 0 |a Algebraic potential theory /  |c Maynard Arsove and Heinz Leutwiler. 
260 |a Providence, R.I. :  |b American Mathematical Society,  |c 1980. 
300 |a 1 online resource (v, 130 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 1947-6221 ;  |v v. 226 
504 |a Includes bibliographical references (pages 128-130). 
505 0 0 |t Introduction --  |t Mixed lattice semigroups --  |t Equivalent forms of Axiom I --  |t The calculus of mixed envelopes --  |t Strong suprema and infima --  |t Harmonic ideals and bands --  |t Preharmonic and potential bands --  |t Riesz decompositions and projections --  |t Quasibounded and singular elements --  |t Superharmonic semigroups --  |t Pseudo projections and balayage operators --  |t Quasi-units and generators --  |t Infinite series of quasi-units --  |t Generators --  |t Increasing additive operators --  |t Potential operators and induced specific projection bands --  |t Some remarks on duals and biduals --  |t Axioms for the hvperharmonic case --  |t The operators S and Q --  |t The weak band of cancellable elements --  |t Hyperharmonic semigroups --  |t The classical superharmonic semigroups and some abstractions. 
520 |a Global aspects of classical and axiomatic potential theory are developed in a purely algebraic way, in terms of a new algebraic structure called a mixed lattice semigroup. This generalizes the notion of a Riesz space (vector lattice) by replacing the usual symmetrical lower and upper envelopes by unsymmetrical "mixed" lower and upper envelopes, formed relative to specific order on the first element and initial order on the second. The treatment makes essential use of a calculus of mixed envelopes, in which the main formulas and inequalities are derived through the use of certain semigroups of nonlinear operators. Techniques based on these operator semigroups are new even in the classical setting. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Riesz spaces. 
650 0 |a Potential theory (Mathematics) 
650 6 |a Espaces de Riesz. 
650 6 |a Théorie du potentiel. 
650 7 |a Potential theory (Mathematics)  |2 fast 
650 7 |a Riesz spaces  |2 fast 
700 1 |a Leutwiler, Heinz,  |d 1939-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjJRjW3mHGXdK8GTDWjP8K 
776 0 8 |i Print version:  |a Arsove, Maynard, 1922-  |t Algebraic potential theory /  |x 0065-9266  |z 9780821822265 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 226.  |x 0065-9266 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3113519  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35006277 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3113519 
938 |a ebrary  |b EBRY  |n ebr10882178 
938 |a YBP Library Services  |b YANK  |n 11898291 
994 |a 92  |b IZTAP