The mod 2 cohomology structure of certain fibre spaces /
Call Number: | Libro Electrónico |
---|---|
Main Author: | |
Other Authors: | |
Format: | Electronic eBook |
Language: | Inglés |
Published: |
Providence, R.I. :
American Mathematical Society,
1967.
|
Series: | Memoirs of the American Mathematical Society ;
no. 74. |
Subjects: | |
Online Access: | Texto completo |
Table of Contents:
- 1. Introduction Part I. Some basic results 2. Summary of results of the previous paper 3. The structure of $\textrm {Tor}_n^R(M, N)$ as a module over the Steenrod algebra 4. Statement of the main theorem 5. The structure of the module $M(\xi)$ 6. Proof of Proposition 4.2 7. Naturality properties 8. Product of two fibre bundles 9. Behavior under the suspension homomorphism Part II. Two-stage Postnikov systems 10. $\lambda $-modules 11. Application of the theory of $\lambda $-modules to fibre spaces 12. Application to 2-stage Postnikov systems with stable $k$-invariants 13. The functor $\Omega $ 14. The structure of the algebra $R$ and the module $M(\xi)$ in the case of a stable 2-stage Postnikov system 15. Simplification of the extension problem under hypotheses (i)-(vii) 16. Re-interpretation of the results of Sec. 15 in the case of 2-stage Postnikov systems with stable mod 2 $k$-invariant 17. Naturality of the fundamental sequence 18. The product of two Postnikov systems 19. Effect of the suspension homomorphism 20. Utilization of the $H$-space structure 21. Examples 22. The Noetherian property of unstable $A$-modules Part III. The unstable Adams spectral sequence 23. The main results of Part III 24. Unstable projective resolutions 25. Adams-Postnikov systems 26. The spectral sequence 27. Convergence statements 28. Appendix.