Cargando…

Cohomology theory and algebraic correspondences /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Snapper, Ernst, 1913-2011
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, R.I. : American Mathematical Society, 1959
Colección:Memoirs of the American Mathematical Society ; no. 33.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Introduction Topological preparations Part I. The cohomology theorem of the graph 1. The proper generalization of Lemma 14.1 of [3] 2. Applications of Lemma 1.1 Part II. Sheaves, associated with doubly graded modules 3. The doubly graded coordinate ring of an algebraic correspondence 4. Sheaves of fractional ideals 5. The sheaf of a doubly graded $v$-module 6. The sheaf $A(v^*(m, n))$ 7. Integrally closed Noetherian rings 8. Divisors Part III. Cohomology groups of doubly graded modules 9. The double complex of a doubly graded $v$-module 10. Polynomials 11. General properties of $H^t(\mathfrak {M})$ 12. General properties of $H^t(X_3, F)$ 13. The divisor $D(m, n)$ Part IV. Linear systems 14. Completeness of $g(m, n)$ 15. The Hilbert characteristic function of $T$ 16. The polynomial $\chi _1(m)$ 17. Irreducible linear systems without base points Part V. The geometric genus under birational transformations 18. Affine subvarieties, associated with $T$ 19. Coverings, associated with $T$ 20. Cohomology groups under birational transformations.