|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn851083388 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
130627s1959 riu ob 000 0 eng d |
040 |
|
|
|a GZM
|b eng
|e pn
|c GZM
|d OCLCO
|d COO
|d UIU
|d E7B
|d OCLCF
|d LLB
|d YDXCP
|d EBLCP
|d OCLCQ
|d AU@
|d LEAUB
|d OCLCQ
|d QGK
|d OCLCQ
|d REDDC
|d VT2
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCL
|
019 |
|
|
|a 1058392665
|a 1097148170
|a 1241941584
|a 1258907140
|a 1258949849
|a 1262674891
|a 1290086197
|
020 |
|
|
|a 9780821899762
|
020 |
|
|
|a 0821899767
|
020 |
|
|
|z 9780821812334
|
020 |
|
|
|z 0821812335
|
029 |
1 |
|
|a AU@
|b 000056677976
|
035 |
|
|
|a (OCoLC)851083388
|z (OCoLC)1058392665
|z (OCoLC)1097148170
|z (OCoLC)1241941584
|z (OCoLC)1258907140
|z (OCoLC)1258949849
|z (OCoLC)1262674891
|z (OCoLC)1290086197
|
050 |
|
4 |
|a QA3
|b .A57 no. 33
|
082 |
1 |
4 |
|a 510.5
|q OCoLC
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Snapper, Ernst,
|d 1913-2011.
|1 https://id.oclc.org/worldcat/entity/E39PCjKcpxRYXcGH9mbWk8mBKd
|
245 |
1 |
0 |
|a Cohomology theory and algebraic correspondences /
|c by Ernst Snapper.
|
260 |
|
|
|a Providence, R.I. :
|b American Mathematical Society,
|c 1959
|g (1972 printing)
|
300 |
|
|
|a 1 online resource (96 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 1947-6221 ;
|v v. 33
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
0 |
|t Introduction
|t Topological preparations
|t Part I. The cohomology theorem of the graph
|t 1. The proper generalization of Lemma 14.1 of [3]
|t 2. Applications of Lemma 1.1
|t Part II. Sheaves, associated with doubly graded modules
|t 3. The doubly graded coordinate ring of an algebraic correspondence
|t 4. Sheaves of fractional ideals
|t 5. The sheaf of a doubly graded $v$-module
|t 6. The sheaf $A(v^*(m, n))$
|t 7. Integrally closed Noetherian rings
|t 8. Divisors
|t Part III. Cohomology groups of doubly graded modules
|t 9. The double complex of a doubly graded $v$-module
|t 10. Polynomials
|t 11. General properties of $H^t(\mathfrak {M})$
|t 12. General properties of $H^t(X_3, F)$
|t 13. The divisor $D(m, n)$
|t Part IV. Linear systems
|t 14. Completeness of $g(m, n)$
|t 15. The Hilbert characteristic function of $T$
|t 16. The polynomial $\chi _1(m)$
|t 17. Irreducible linear systems without base points
|t Part V. The geometric genus under birational transformations
|t 18. Affine subvarieties, associated with $T$
|t 19. Coverings, associated with $T$
|t 20. Cohomology groups under birational transformations.
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Homology theory.
|
650 |
|
0 |
|a Sheaf theory.
|
650 |
|
0 |
|a Algebraic topology.
|
650 |
|
6 |
|a Homologie.
|
650 |
|
6 |
|a Théorie des faisceaux.
|
650 |
|
6 |
|a Topologie algébrique.
|
650 |
|
7 |
|a Algebraic topology
|2 fast
|
650 |
|
7 |
|a Homology theory
|2 fast
|
650 |
|
7 |
|a Sheaf theory
|2 fast
|
758 |
|
|
|i has work:
|a Cohomology theory and algebraic correspondences (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGby93wqr4Y3FtghMF9vH3
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Snapper, Ernst, 1913-2011.
|t Cohomology theory and algebraic correspondences /
|x 0065-9266
|z 9780821812334
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 33.
|x 0065-9266
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3113570
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3113570
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10882229
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11898202
|
994 |
|
|
|a 92
|b IZTAP
|