|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_ocn850220173 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
130625s2013 xx ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCO
|d UKDOC
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d ZCU
|d MERUC
|d U3W
|d OCLCF
|d OCLCO
|d OCLCQ
|d OCLCO
|d ICG
|d INT
|d OCLCQ
|d DKC
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
020 |
|
|
|a 9781118577950
|
020 |
|
|
|a 1118577957
|
020 |
|
|
|z 9781118577967
|
020 |
|
|
|z 9781848214347
|
029 |
1 |
|
|a AU@
|b 000055899229
|
029 |
1 |
|
|a DEBBG
|b BV044174635
|
029 |
1 |
|
|a DEBSZ
|b 431384932
|
035 |
|
|
|a (OCoLC)850220173
|
050 |
|
4 |
|a TA483
|
082 |
0 |
4 |
|a 620.16
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Lexcellent, C.
|q (Christian)
|1 https://id.oclc.org/worldcat/entity/E39PCjDbQ3CxRktHp9W9Tdj9Qm
|
245 |
1 |
0 |
|a Shape-Memory Alloys Handbook.
|
260 |
|
|
|a Hoboken :
|b Wiley,
|c 2013.
|
300 |
|
|
|a 1 online resource (397 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a ISTE
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Title Page; Contents; Foreword; Preface; Chapter 1. Some General Points about SMAs; 1.1. Introduction; 1.2. Why are SMAs of interest for industry?; 1.3. Crystallographic theory of martensitic transformation; 1.4. Content of this book; 1.4.1. State of the art in the domain and main publications; 1.4.2. Content of this book; Chapter 2. The World of Shape-memory Alloys; 2.1. Introduction and general points; 2.2. Basic metallurgy of SMAs, by Michel Morin; 2.2.1. Copper-based shape-memory alloys; 2.2.2. Cu-Zn-Al; 2.2.3. Cu-Al-Ni; 2.2.4. Cu-Al-Be.
|
505 |
8 |
|
|a 2.2.5. The phenomena of aging, stabilization and fatigue2.2.6. Methods for copper-based SMA elaboration; 2.2.7. Ti-Ni-based alloys; 2.2.8. Ti-Ni alloy; 2.2.9. Ti-Ni-X alloys; 2.2.10. Elaboration; 2.2.11. Shaping; 2.2.12. Final heat treatments; 2.2.13. Table comparing the physical and mechanical properties; 2.2.14. Biocompatibility of SMAs; 2.3. Measurements of phase transformation temperatures; 2.4. Self-accommodating martensite and stress-induced martensite; 2.5. Fatigue resistance; 2.5.1. Causes of degradation of the properties; 2.5.2. Fatigue of a Cu-Al-Be monocrystal; 2.5.3. Results.
|
505 |
8 |
|
|a 2.6. Functional properties of SMAs2.6.1. The pseudo-elastic effect; 2.6.2. One-way shape-memory effect; 2.6.3. Recovery stress; 2.6.4. Double shape-memory effect: training; 2.7. Use of NiTi for secondary batteries; 2.8. Use of SMAs in the domain of civil engineering; Chapter 3. Martensitic Transformation; 3.1. Overview of continuum mechanics; 3.1.1. Main notations for vectors; 3.2. Main notations for matrices; 3.3. Additional notations and reminders; 3.3.1. Unit matrices; 3.3.2. Rotation matrix; 3.3.3. Symmetric matrices; 3.3.4. Positive definite symmetric matrices; 3.3.5. Polar decomposition.
|
505 |
8 |
|
|a 3.4. Kinematic description3.4.1. Strain gradient; 3.4.2. Dilatation and strain tensors; 3.4.3. Transformation of an element of volume or surface (see Figure 3.2); 3.5. Kinematic compatibility; 3.6. Continuous theory of crystalline solids; 3.6.1. Bravais lattices; 3.6.2. Deformation of lattices and symmetry; 3.6.3. Link between lattices and the continuous medium: Cauchy-Born hypothesis; 3.6.4. Energy density in crystalline solids; 3.7. Martensitic transformation; 3.7.1. Introduction; 3.7.2. Martensitic transformation: Bain matrix or transformation matrix.
|
505 |
8 |
|
|a 3.8. Equation governing the interface between two martensite variants Mi/Mj or the "twinning equation"3.8.1. Cubic --> quadratic transformation; 3.8.2. Cubic --> orthorhombic transformation; 3.9. Origin of the microstructure; 3.9.1. Simplified one-dimensional case; 3.9.2. Simplified two-dimensional case; 3.9.3. Three-dimensional case; 3.10. Special microstructures; 3.10.1. Austenite-martensite interface; 3.10.2. Phenomenological theory of martensite; 3.10.3. Crystallographic theory of martensite; 3.11. From the scale of the crystalline lattice to the mesoscopic and then the macroscopic scale.
|
500 |
|
|
|a 3.11.1. Approach at the level of the crystalline lattice.
|
520 |
|
|
|a The aim of this book is to understand and describe the martensitic phase transformation and the process of martensite platelet reorientation. These two key elements enable the author to introduce the main features associated with the behavior of shape-memory alloys (SMAs), i.e. the one-way shape-memory effect, pseudo-elasticity, training and recovery. Attention is paid in particular to the thermodynamical frame for solid materials modeling at the macroscopic scale and its applications, as well as to the particular use of such alloys - the simplified calculations for the bending of bars.
|
504 |
|
|
|a Includes bibliographical references and index.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Alloys.
|
650 |
|
0 |
|a Shape memory alloys.
|
650 |
|
2 |
|a Alloys
|
650 |
|
6 |
|a Alliages.
|
650 |
|
6 |
|a Alliages à mémoire de forme.
|
650 |
|
7 |
|a alloy.
|2 aat
|
650 |
|
7 |
|a Alloys
|2 fast
|
650 |
|
7 |
|a Shape memory alloys
|2 fast
|
758 |
|
|
|i has work:
|a Shape-memory alloys handbook (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCH8qMdM67BPqPDcvtPrj83
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Lexcellent, Christian.
|t Shape-Memory Alloys Handbook.
|d Hoboken : Wiley, ©2013
|z 9781848214347
|
830 |
|
0 |
|a ISTE.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1168521
|z Texto completo
|
938 |
|
|
|a 123Library
|b 123L
|n 96910
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1168521
|
994 |
|
|
|a 92
|b IZTAP
|