|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_ocn850164833 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
130625s2013 xx o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCO
|d YDXCP
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d ZCU
|d MERUC
|d ICG
|d OCLCO
|d OCLCF
|d OCLCQ
|d OCLCO
|d AU@
|d OCLCQ
|d DKC
|d OCLCQ
|d OCLCO
|d SGP
|d OCLCQ
|d OCLCO
|d OCLCL
|
020 |
|
|
|a 9781118573655
|
020 |
|
|
|a 111857365X
|
029 |
1 |
|
|a AU@
|b 000060076712
|
029 |
1 |
|
|a DEBBG
|b BV044175870
|
029 |
1 |
|
|a DEBSZ
|b 397550707
|
029 |
1 |
|
|a DEBSZ
|b 425886069
|
029 |
1 |
|
|a DEBSZ
|b 431428735
|
029 |
1 |
|
|a DEBSZ
|b 449362213
|
035 |
|
|
|a (OCoLC)850164833
|
050 |
|
4 |
|a QA279 .P68 2013
|
082 |
0 |
4 |
|a 519.5
|a 519.538
|
084 |
|
|
|a MAT029020
|2 bisacsh
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Pourahmadi, Mohsen.
|
245 |
1 |
0 |
|a Modern Methods to Covariance Estimation :
|b With High-Dimensional Data.
|
260 |
|
|
|a Hoboken :
|b Wiley,
|c 2013.
|
300 |
|
|
|a 1 online resource (208 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a HIGH-DIMENSIONAL COVARIANCE ESTIMATION; CONTENTS; PREFACE; I MOTIVATION AND THE BASICS; 1 INTRODUCTION; 1.1 Least Squares and Regularized Regression; 1.2 Lasso: Survival of the Bigger; 1.3 Thresholding the Sample Covariance Matrix; 1.4 Sparse PCA and Regression; 1.5 Graphical Models: Nodewise Regression; 1.6 Cholesky Decomposition and Regression; 1.7 The Bigger Picture: Latent Factor Models; 1.8 Further Reading; 2 DATA, SPARSITY, AND REGULARIZATION; 2.1 Data Matrix: Examples; 2.2 Shrinking the Sample Covariance Matrix; 2.3 Distribution of the Sample Eigenvalues.
|
505 |
8 |
|
|a 2.4 Regularizing Covariances Like a Mean2.5 The Lasso Regression; 2.6 Lasso: Variable Selection and Prediction; 2.7 Lasso: Degrees of Freedom and BIC; 2.8 Some Alternatives to the Lasso Penalty; 3 COVARIANCE MATRICES; 3.1 Definition and Basic Properties; 3.2 The Spectral Decomposition; 3.3 Structured Covariance Matrices; 3.4 Functions of a Covariance Matrix; 3.5 PCA: The Maximum Variance Property; 3.6 Modified Cholesky Decomposition; 3.7 Latent Factor Models; 3.8 GLM for Covariance Matrices; 3.9 GLM via the Cholesky Decomposition; 3.10 GLM for Incomplete Longitudinal Data.
|
505 |
8 |
|
|a 3.10.1 The Incoherency Problem in Incomplete Longitudinal Data3.10.2 The Incomplete Data and The EM Algorithm; 3.11 A Data Example: Fruit Fly Mortality Rate; 3.12 Simulating Random Correlation Matrices; 3.13 Bayesian Analysis of Covariance Matrices; II COVARIANCE ESTIMATION: REGULARIZATION; 4 REGULARIZING THE EIGENSTRUCTURE; 4.1 Shrinking the Eigenvalues; 4.2 Regularizing The Eigenvectors; 4.3 A Duality between PCA and SVD; 4.4 Implementing Sparse PCA: A Data Example; 4.5 Sparse Singular Value Decomposition (SSVD); 4.6 Consistency of PCA; 4.7 Principal Subspace Estimation; 4.8 Further Reading.
|
520 |
|
|
|a Methods for estimating sparse and large covariance matrices Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences. High-Dimensional Covariance Estimation provides accessible and comprehensive coverage of the classical and modern approaches for estimating covariance matrices as well as their applications to the rapidly developing areas lying at the intersection of statistics and mac.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Analysis of covariance.
|
650 |
|
0 |
|a Multivariate analysis.
|
650 |
|
2 |
|a Multivariate Analysis
|
650 |
|
6 |
|a Analyse de covariance.
|
650 |
|
6 |
|a Analyse multivariée.
|
650 |
|
7 |
|a Analysis of covariance
|2 fast
|
650 |
|
7 |
|a Multivariate analysis
|2 fast
|
758 |
|
|
|i has work:
|a Modern methods to covariance estimation (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCYCkKkjDHqrWT8pbr9KPgq
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Pourahmadi, Mohsen.
|t Modern Methods to Covariance Estimation : With High-Dimensional Data.
|d Hoboken : Wiley, ©2013
|z 9781118034293
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1204740
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1204740
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10745717
|
994 |
|
|
|a 92
|b IZTAP
|