Cargando…

Modern Methods to Covariance Estimation : With High-Dimensional Data.

Methods for estimating sparse and large covariance matrices Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sc...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Pourahmadi, Mohsen
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken : Wiley, 2013.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn850164833
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 130625s2013 xx o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d YDXCP  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d ZCU  |d MERUC  |d ICG  |d OCLCO  |d OCLCF  |d OCLCQ  |d OCLCO  |d AU@  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d SGP  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781118573655 
020 |a 111857365X 
029 1 |a AU@  |b 000060076712 
029 1 |a DEBBG  |b BV044175870 
029 1 |a DEBSZ  |b 397550707 
029 1 |a DEBSZ  |b 425886069 
029 1 |a DEBSZ  |b 431428735 
029 1 |a DEBSZ  |b 449362213 
035 |a (OCoLC)850164833 
050 4 |a QA279 .P68 2013 
082 0 4 |a 519.5  |a 519.538 
084 |a MAT029020  |2 bisacsh 
049 |a UAMI 
100 1 |a Pourahmadi, Mohsen. 
245 1 0 |a Modern Methods to Covariance Estimation :  |b With High-Dimensional Data. 
260 |a Hoboken :  |b Wiley,  |c 2013. 
300 |a 1 online resource (208 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a HIGH-DIMENSIONAL COVARIANCE ESTIMATION; CONTENTS; PREFACE; I MOTIVATION AND THE BASICS; 1 INTRODUCTION; 1.1 Least Squares and Regularized Regression; 1.2 Lasso: Survival of the Bigger; 1.3 Thresholding the Sample Covariance Matrix; 1.4 Sparse PCA and Regression; 1.5 Graphical Models: Nodewise Regression; 1.6 Cholesky Decomposition and Regression; 1.7 The Bigger Picture: Latent Factor Models; 1.8 Further Reading; 2 DATA, SPARSITY, AND REGULARIZATION; 2.1 Data Matrix: Examples; 2.2 Shrinking the Sample Covariance Matrix; 2.3 Distribution of the Sample Eigenvalues. 
505 8 |a 2.4 Regularizing Covariances Like a Mean2.5 The Lasso Regression; 2.6 Lasso: Variable Selection and Prediction; 2.7 Lasso: Degrees of Freedom and BIC; 2.8 Some Alternatives to the Lasso Penalty; 3 COVARIANCE MATRICES; 3.1 Definition and Basic Properties; 3.2 The Spectral Decomposition; 3.3 Structured Covariance Matrices; 3.4 Functions of a Covariance Matrix; 3.5 PCA: The Maximum Variance Property; 3.6 Modified Cholesky Decomposition; 3.7 Latent Factor Models; 3.8 GLM for Covariance Matrices; 3.9 GLM via the Cholesky Decomposition; 3.10 GLM for Incomplete Longitudinal Data. 
505 8 |a 3.10.1 The Incoherency Problem in Incomplete Longitudinal Data3.10.2 The Incomplete Data and The EM Algorithm; 3.11 A Data Example: Fruit Fly Mortality Rate; 3.12 Simulating Random Correlation Matrices; 3.13 Bayesian Analysis of Covariance Matrices; II COVARIANCE ESTIMATION: REGULARIZATION; 4 REGULARIZING THE EIGENSTRUCTURE; 4.1 Shrinking the Eigenvalues; 4.2 Regularizing The Eigenvectors; 4.3 A Duality between PCA and SVD; 4.4 Implementing Sparse PCA: A Data Example; 4.5 Sparse Singular Value Decomposition (SSVD); 4.6 Consistency of PCA; 4.7 Principal Subspace Estimation; 4.8 Further Reading. 
520 |a Methods for estimating sparse and large covariance matrices Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences. High-Dimensional Covariance Estimation provides accessible and comprehensive coverage of the classical and modern approaches for estimating covariance matrices as well as their applications to the rapidly developing areas lying at the intersection of statistics and mac. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Analysis of covariance. 
650 0 |a Multivariate analysis. 
650 2 |a Multivariate Analysis 
650 6 |a Analyse de covariance. 
650 6 |a Analyse multivariée. 
650 7 |a Analysis of covariance  |2 fast 
650 7 |a Multivariate analysis  |2 fast 
758 |i has work:  |a Modern methods to covariance estimation (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCYCkKkjDHqrWT8pbr9KPgq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Pourahmadi, Mohsen.  |t Modern Methods to Covariance Estimation : With High-Dimensional Data.  |d Hoboken : Wiley, ©2013  |z 9781118034293 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1204740  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1204740 
938 |a YBP Library Services  |b YANK  |n 10745717 
994 |a 92  |b IZTAP