Cargando…

Affine algebraic geometry - proceedings of the conference.

The present volume grew out of an international conference on affine algebraic geometry held in Osaka, Japan during 3-6 March 2011 and is dedicated to Professor Masayoshi Miyanishi on the occasion of his 70th birthday. It contains 16 refereed articles in the areas of affine algebraic geometry, commu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Masuda, Kayo
Formato: Electrónico eBook
Idioma:Inglés
Publicado: World Scientific, 2013.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBOOKCENTRAL_ocn847949268
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 130614s2013 xx o 000 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d EBLCP  |d MHW  |d DEBSZ  |d OCLCQ  |d ZCU  |d MERUC  |d OCLCQ  |d ICG  |d OCLCO  |d OCLCF  |d AU@  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 1299651984  |q (ebk) 
020 |a 9781299651982  |q (ebk) 
020 |a 9789814436700 
020 |a 9814436704 
029 1 |a AU@  |b 000055897099 
029 1 |a DEBBG  |b BV044176492 
029 1 |a DEBSZ  |b 391775235 
029 1 |a DEBSZ  |b 45499883X 
035 |a (OCoLC)847949268 
037 |a 496448  |b MIL 
050 4 |a QA564 ǂb C66 2011eb 
082 0 4 |a 516.352 
049 |a UAMI 
100 1 |a Masuda, Kayo. 
245 1 0 |a Affine algebraic geometry - proceedings of the conference. 
260 |b World Scientific,  |c 2013. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a The present volume grew out of an international conference on affine algebraic geometry held in Osaka, Japan during 3-6 March 2011 and is dedicated to Professor Masayoshi Miyanishi on the occasion of his 70th birthday. It contains 16 refereed articles in the areas of affine algebraic geometry, commutative algebra and related fields, which have been the working fields of Professor Miyanishi for almost 50 years. Readers will be able to find recent trends in these areas too. The topics contain both algebraic and analytic, as well as both affine and projective, problems. All the results treated in. 
588 0 |a Print version record. 
505 0 |a Preface; Dedication; Bibliography of Masayoshi Miyanishi; CONTENTS; Acyclic curves and group actions on affine toric surfaces; Introduction; 1. Preliminaries; 1.1. Simply connected plane affine curves; 1.2. The automorphism group of the affine plane; 2. Subgroups of de Jonqueres group and stabilizers of plane curves; 2.1. Subgroups of the de Jonqueres group; 2.2. Stabilizers of acyclic plane curves; 3. Acyclic curves on affine toric surfaces; 3.1. Acyclic curves in the smooth locus; 3.2. Acyclic curves through the singular point; 3.3. Acyclic curves as orbit closures. 
505 8 |a 3.4. Reducible acyclic curves on affine toric surfaces4. Automorphism groups of affine toric surfaces; 4.1. Free amalgamated product structure; 4.2. Algebraic groups actions on affine toric surfaces; 5. Acyclic curves and automorphism groups of non-toric quotient surfaces; References; Hirzebruch surfaces and compactifications of C2; 1. Introduction; 2. A proof of Theorem 1.2; 3. A proof of Theorem 1.3; 4. Abhyankar-Moh-Suzuki's theorem; References; Cyclic multiple planes, branched covers of Sn and a result of D. L. Goldsmith; 1. Introduction; 2. Preliminaries; 3. Proof of the Theorem. 
505 8 |a 4. Branched covers of Sn5. Goldsmith's result; References; A1*-fibrations on affine threefolds; Introduction; 1. Preliminaries; 2. A1*-fibration; 3. Homology threefolds with A1-fibrations; 4. Contractible affine threefolds with A1 *-fibrations; References; Acknowledgements; Miyanishi's characterization of singularities appearing on A1-fibrations does not hold in higher dimensions; 1. Introduction; 2. Preliminaries; 3. Proof of Theorem 1.2; 3.1.; 3.2.; 3.2.1.; 3.3.; 3.4.; 3.5.; 3.5.1.; 3.5.2.; 3.6.; 3.6.1.; 3.6.2.; Acknowledgements; References. 
505 8 |a 3. Separation of branches I: The branches are tangent at infinity4. Separation of branches II: The branches separate on the first blowing up; References; Acknowledgements; Abhyankar-Sathaye Embedding Conjecture for a geometric case; 1. Introduction; 2. Preliminaries; 3. Proof of Theorem 1.1; Acknowledgments; References; Some subgroups of the Cremona groups; 1. Introduction; 2. Flattening, linearizability, tori; 3. Subgroups of the rational de Jonquieres groups; 4. Affine subspaces as cross-sections; References; The gonality of singular plane curves II; 1. Introduction; 2. Preliminaries. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Geometry, Algebraic  |v Congresses. 
650 0 |a Geometry, Affine  |v Congresses. 
650 6 |a Géométrie algébrique  |v Congrès. 
650 6 |a Géométrie affine  |v Congrès. 
650 7 |a Geometry, Affine  |2 fast 
650 7 |a Geometry, Algebraic  |2 fast 
655 7 |a Conference papers and proceedings  |2 fast 
776 0 8 |i Print version:  |z 9781299651982 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1223370  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25272386 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1223370 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25646045 
994 |a 92  |b IZTAP