|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn847842758 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
130611s2013 nju ob 001 0 eng |
010 |
|
|
|a 2013023548
|
040 |
|
|
|a DLC
|b eng
|e rda
|e pn
|c DLC
|d YDX
|d IDEBK
|d N$T
|d EBLCP
|d CUS
|d YDXCP
|d CDX
|d OCLCF
|d COO
|d IUL
|d RECBK
|d HEBIS
|d CNMTR
|d OCLCO
|d DEBSZ
|d LIP
|d ZCU
|d MERUC
|d OCLCQ
|d OCLCO
|d OCLCQ
|d VT2
|d WYU
|d OCLCQ
|d TKN
|d U3W
|d OCLCQ
|d DKC
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 864911019
|
020 |
|
|
|a 9781118356647
|q (epub)
|
020 |
|
|
|a 1118356640
|q (epub)
|
020 |
|
|
|a 9781118356630
|q (pdf)
|
020 |
|
|
|a 1118356632
|q (pdf)
|
020 |
|
|
|a 9781118356623
|q (mobi)
|
020 |
|
|
|a 1118356624
|q (mobi)
|
020 |
|
|
|a 9781118356654
|
020 |
|
|
|a 1118356659
|
020 |
|
|
|a 1118016025
|
020 |
|
|
|a 9781118016022
|
020 |
|
|
|a 9781299966291
|
020 |
|
|
|a 1299966292
|
020 |
|
|
|z 9781118016022
|q (hardback)
|
028 |
0 |
1 |
|a EB00063425
|b Recorded Books
|
029 |
1 |
|
|a AU@
|b 000051634936
|
029 |
1 |
|
|a CHBIS
|b 009986395
|
029 |
1 |
|
|a CHBIS
|b 010131754
|
029 |
1 |
|
|a CHNEW
|b 000942027
|
029 |
1 |
|
|a CHVBK
|b 309707412
|
029 |
1 |
|
|a CHVBK
|b 480223084
|
029 |
1 |
|
|a DEBSZ
|b 431523630
|
029 |
1 |
|
|a DEBSZ
|b 485039079
|
029 |
1 |
|
|a NZ1
|b 15341535
|
029 |
1 |
|
|a NZ1
|b 16062219
|
029 |
1 |
|
|a AU@
|b 000054513960
|
035 |
|
|
|a (OCoLC)847842758
|z (OCoLC)864911019
|
042 |
|
|
|a pcc
|
050 |
0 |
0 |
|a QD502.5
|
072 |
|
7 |
|a SCI
|x 013040
|2 bisacsh
|
082 |
0 |
0 |
|a 547/.215
|2 23
|
084 |
|
|
|a SCI013040
|2 bisacsh
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Catalytic cascade reactions /
|c edited by Dr. Peng-Fei Xu and Dr. Wei Wang.
|
264 |
|
1 |
|a Hoboken, New Jersey :
|b Wiley,
|c [2013]
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
520 |
|
|
|a "The development of catalytic versions of cascade reactions has become one of the most active and burgeoning reaction areas in organic synthesis. Covering both organocatalysis and transition-metal catalysis for these reactions, Catalytic Cascade Reactions illustrates the versatility and application of cascade reactions for synthesizing valuable compounds, such as drugs and natural products. Highlighting catalytic versus non-catalytic reactions, an important shift in academic and industry practice, the text brings chemists and the organic synthesis community up to speed on the many recent advances in the field"--
|c Provided by publisher.
|
520 |
|
|
|a "This book covers recent and important discoveries and activities in catalytic cascade reactions, an emerging and dynamic direction for organic synthesis"--
|c Provided by publisher.
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record and CIP data provided by publisher.
|
505 |
0 |
|
|a Catalytic Cascade Reactions -- Copyright -- Contents -- Contributors -- Preface -- 1 Amine-Catalyzed Cascade Reactions -- 1.1 Introduction -- 1.2 Enamine-Activated Cascade Reactions -- 1.2.1 Enamine-Enamine Cascades -- 1.2.1.1 Design of Enamine-Enamine Cascades -- 1.2.1.2 Examples of Enamine-Enamine and Enamine-Enamine Cyclization Cascades -- 1.2.1.3 Enamine-Enamine in Three-Component Cascades -- 1.2.1.4 Enamine-Activated Double a-Functionalization -- 1.2.1.5 Robinson Annulations -- 1.2.2 Enamine-Iminium Cascades -- 1.2.2.1 Design of Enamine-Iminium Cascades -- 1.2.2.2 Examples of [4 + 2] Reactions with Enamine-Activated Dienes -- 1.2.2.3 Inverse-Electron-Demand [4 + 2] Reactions with Enamine-Activated Dienophiles -- 1.2.2.4 Enamine-Iminium-Enamine Cascades -- 1.2.3 Enamine Catalysis Cyclization -- 1.2.3.1 Design of Enamine-Cyclization Cascade Reactions -- 1.2.3.2 Enamine-Intermolecular Addition Cascades -- 1.2.3.3 Enamine-Intramolecular Addition Cascades -- 1.2.3.4 Enamine-Intramolecular Aldol Cascades -- 1.3 Iminium-Initiated Cascade Reactions -- 1.3.1 Design of Iminium-Enamine Cascade Reactions -- 1.3.2 Iminium-Activated Diels-Alder Reactions -- 1.3.3 Iminium-Activated Sequential [4+2] Reactions -- 1.3.4 Iminium-Activated [3+2] Reactions -- 1.3.5 Iminium-Activated Sequential [3+2] Reactions -- 1.3.6 Iminium-Activated [2+1] Reactions -- 1.3.6.1 Iminium-Activated Cyclopropanations -- 1.3.6.2 Iminium-Activated Epoxidations -- 1.3.6.3 Iminium-Activated Aziridinations -- 1.3.7 Iminium-Activated Multicomponent Reactions -- 1.3.8 Iminium-Activated [3+3] Reactions -- 1.3.8.1 Iminium-Activated All-Carbon-Centered [3+3] Reactions -- 1.3.8.2 Imin ium-Activated Hetero-[3+3] Reactions -- 1.3.9 Other Iminium-Activated Cascade Reactions -- 1.4 Cycle-Specific Catalysis Cascades -- 1.5 Other Strategies -- 1.6 Summary and Outlook -- References.
|
505 |
8 |
|
|a 2 Brønsted Acid-Catalyzed Cascade Reactions -- 2.1 Introduction -- 2.2 Protonic Acid-Catalyzed Cascade Reactions -- 2.2.1 Mannich Reaction -- 2.2.2 Pictect-Spengler Reaction -- 2.2.3 Biginelli Reaction -- 2.2.4 Povarov Reaction -- 2.2.5 Reduction Reaction -- 2.2.6 1,3-Dipolar Cycloaddition -- 2.2.7 Darzen Reaction -- 2.2.8 Acyclic Aminal and Hemiaminal Synthesis -- 2.2.9 Rearrangement Reaction -- 2.2.10 a, b -Unsaturated Imine-Involved Cyclization Reaction -- 2.2.11 Alkylation Reaction -- 2.2.12 Desymmetrization Reaction -- 2.2.13 Halocyclization -- 2.2.14 Redox Reaction -- 2.2.15 Isocyanide-Involved Multicomponent Reaction -- 2.2.16 Other Protonic Acid-Catalyzed Cascade Reactions -- 2.3 Chiral Thiourea (Urea)-Catalyzed Cascade Reactions -- 2.3.1 Neutral Activation -- 2.3.1.1 Halolactonization -- 2.3.1.2 Mannich Reaction -- 2.3.1.3 Michael-Aldol Reaction -- 2.3.1.4 Michael-Alkylation Reaction -- 2.3.1.5 Cyano-Involved Michael-Cyclization Reaction -- 2.3.1.6 Michael-Hemiketalization (Hemiacetalization) Reaction -- 2.3.1.7 Michael-Henry Reaction -- 2.3.1.8 Michael-Michael Reaction -- 2.3.1.9 Petasis Reaction -- 2.3.1.10 Sulfur Ylide-Involved Michael-Cyclization Reaction -- 2.3.1.11 a-Isothiocyanato Imide-Involved Cascade Reaction -- 2.3.1.12 a-Isocyanide-Involved Cascade Reaction -- 2.3.2 Anion-Binding Catalysis -- 2.3.2.1 Pictet-Spengler Reaction -- 2.3.2.2 Other Iminium Ion-Involved Cascade Reaction -- 2.3.2.3 Oxocarbenium Ion-Involved Cascade Reaction -- 2.4 Brønsted Acid and Transition Metal Cooperatively Catalyzed Cascade Reactions -- 2.4.1 Dual Catalysis -- 2.4.2 Cascade Catalysis -- 2.4.2.1 Pd(0)/Brønsted Acid System -- 2.4.2.2 Ruthenium/Brønsted Acid System -- 2.4.2.3 Au(I)/Brønsted Acid System -- 2.4.2.4 Other Binary Catalytic Systems -- 2.5 Conclusions -- References.
|
505 |
8 |
|
|a 3 Application of Organocatalytic Cascade Reactions in Natural Product Synthesis and Drug Discovery -- 3.1 Introduction -- 3.2 Amine-Catalyzed Cascade Reactions in Natural Product Synthesis -- 3.2.1 Iminium-Ion-Catalyzed Cascade Reactions in Natural Product Synthesis -- 3.2.2 Cycle-Specific Cascade Catalysis in Natural Product Synthesis -- 3.2.2.1 Iminium-Enamine Cycle-Specific Cascade Catalysis -- 3.2.2.2 Enamine (/Dienamine)-Iminium Cycle-Specific Cascade Catalysis -- 3.2.2.3 More Complex Cycle-Specific Cascade Catalysis -- 3.3 Brønsted Acid-Catalyzed Cascade Reactions in Natural Product Synthesis -- 3.4 Bifunctional Base/Brønsted Acid-Catalyzed Cascade Reactions in Natural Product Synthesis -- 3.5 Summary and Outlook -- References -- 4 Gold-Catalyzed Cascade Reactions -- 4.1 Introduction -- 4.2 Cascade Reactions of Alkynes -- 4.2.1 Cascade Reactions of Enynes -- 4.2.1.1 Cascade Reactions of 1,6-Enynes -- 4.2.1.2 Cascade Reactions of 1,5-Enynes -- 4.2.1.3 Cascade Reactions of 1,4-Enynes -- 4.2.1.4 Cascade Reactions of 1,3-Enynes -- 4.2.1.5 Cascade Reactions of 1,n-Enynes (n> 6) -- 4.2.2 Cascade Reactions of Propargyl Carboxylates -- 4.2.3 Cascade Reactions of ortho-Substituted Arylalkynes -- 4.2.4 Cascade Reactions of Other Alkynes -- 4.3 Cascade Reactions of Allenes -- 4.4 Cascade Reactions of Alkenes and Cyclopropenes -- 4.5 Closing Remarks -- References -- 5 Cascade Reactions Catalyzed by Ruthenium, Iron, Iridium, Rhodium, and Copper -- 5.1 Introduction -- 5.2 Ruthenium-Catalyzed Transformations -- 5.3 Iron-Catalyzed Transformations -- 5.4 Iridium-Catalyzed Transformations -- 5.5 Rhodium-Catalyzed Transformations -- 5.6 Copper-Catalyzed Transformations -- 5.7 Miscellaneous Catalytic Reactions -- 5.8 Summary -- References -- 6 Palladium-Catalyzed Cascade Reactions of Alkenes, Alkynes, and Allenes -- 6.1 Introduction.
|
505 |
8 |
|
|a 6.2 Cascade Reactions Involving Alkenes -- 6.2.1 Double Mizoroki-Heck Reaction Cascade -- 6.2.2 Cascade Heck Reaction/C-H Activation -- 6.2.3 Cascade Heck Reaction/Reduction/ Cyclization -- 6.2.4 Cascade Heck Reaction/Carbonylation -- 6.2.5 Cascade Heck Reaction/ Suzuki Coupling -- 6.2.6 Cascade Amino-/Oxopalladation/Carbopalladation Reaction -- 6.3 Cascade Reactions Involving Alkynes -- 6.3.1 Cascade Heck Reactions -- 6.3.2 Cascade Heck/Suzuki Coupling -- 6.3.3 Cationic Palladium(II)-Catalyzed Cascade Reactions -- 6.3.4 Cascade Heck Reaction/Stille Coupling -- 6.3.5 Cascade Heck/Sonogashira Coupling -- 6.3.6 Cascade Sonogashira Coupling-Cyclization -- 6.3.7 Cascade Heck and C-H Bond Functionalization -- 6.3.8 Cascade Reactions Initiated by Oxopalladation -- 6.3.9 Cascade Reactions Initiated by Aminopalladation -- 6.3.10 Cascade Reactions Initiated by Halopalladation or Acetoxypalladation -- 6.3.11 Cascade Reactions of 2-(1-Alkynyl)-alk-2-en-1-ones -- 6.3.12 Cascade Reactions of Propargylic Derivatives -- 6.4 Cascade Reactions Involving Allenes -- 6.4.1 Cascade Reactions of Monoallenes -- 6.4.2 Cross-Coupling Cyclization of Two Different Allenes -- 6.5 Summary and Outlook -- Acknowledgments -- References -- 7 Use of Transition Metal-Catalyzed Cascade Reactions in Natural Product Synthesis and Drug Discovery -- 7.1 Introduction -- 7.2 Palladium-Catalyzed Cascade Reactions in Total Synthesis -- 7.2.1 Cross-Coupling Reactions -- 7.2.1.1 Heck Reaction -- 7.2.1.2 Stille Reaction -- 7.2.1.3 Suzuki Coupling Reaction -- 7.2.2 Tsuji-Trost Reaction -- 7.2.3 Other Palladium-Catalyzed Cascade Reactions in Total Synthesis -- 7.3 Ruthenium-Catalyzed Cascade Reactions in Total Synthesis -- 7.4 Gold- and Platinum-Catalyzed Cascade Reactions in Organic Reactions -- 7.5 Copper- and Rhodium-Catalyzed Cascade Reactions in O rganic Synthesis -- 7.6 Summary -- References.
|
505 |
8 |
|
|a 8 Engineering Mono- and Multifunctional Nanocatalysts for Cascade Reactions -- 8.1 Introduction -- 8.2 Heterogeneous Monofunctional Nanocatalysts -- 8.2.1 Metal-Based Monofunctional Nanocatalysts -- 8.2.2 Metal Oxide-Based Monofunctional Nanocatalysts -- 8.2.3 Orgamometallic-Based Monofunctional Nanocatalysts -- 8.2.4 Graphene Oxide-Based Monofunctional Nanocatalysts -- 8.3 Heterogeneous Multifunctional Nanocatalysts -- 8.3.1 Acid-Base Combined Multifunctional Nanocatalysts -- 8.3.2 Metal-Base Combined Multifunctional Nanocatalysts -- 8.3.3 Organometallic-Base Combined Multifunctional Nanocatalysts -- 8.3.4 Binary Organometallic-Based Multifunctional Nanocatalysts -- 8.3.5 Binary Metal-Based Multifunctional Nanocatalysts -- 8.3.6 Metal-Metal Oxide Combined Multifunctional Nanocatalysts -- 8.3.7 Organocatalyst-Acid Combined Multifunctional Nanocatalysts -- 8.3.8 Acid-Base-Metal Combined Multifunctional Nanocatalysts -- 8.3.9 Triple Enzyme-Based Multifunctional Nanocatalysts -- 8.4 Conclusions and Perspectives -- References -- 9 Multiple-Catalyst-Promoted Cascade Reactions -- 9.1 Introduction -- 9.2 Multiple Metal Catalyst-Promoted Cascade Reactions -- 9.2.1 Catalytic Systems Involving Palladium -- 9.2.2 Catalytic Systems Involving Other Metals -- 9.3 Multiple Organocatalyst-Promoted Cascade Reactions -- 9.3.1 Catalytic Systems Combining Multiple Amine Catalysts -- 9.3.2 Catalytic Systems Combining Amine Catalysts and Nucleophilic Carbenes -- 9.3.3 Catalytic Systems Combining Amine and Hydrogen-Bonding Donor Catalysts -- 9.3.4 Catalytic Systems Involving Other Organocatalysts -- 9.4 Metal/Organic Binary Catalytic System-Promoted Cascade Reactions -- 9.4.1 Catalytic Systems Combining Secondary Amine and Metal Catalysts -- 9.4.2 Catalytic Systems Combining Brønsted Acid and Metal Catalysts.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Organic reaction mechanisms.
|
650 |
|
0 |
|a Catalysis.
|
650 |
|
0 |
|a Chemical reactions.
|
650 |
|
0 |
|a Organic compounds
|x Synthesis.
|
650 |
|
2 |
|a Catalysis
|
650 |
|
6 |
|a Réactions organiques (Chimie)
|x Mécanismes.
|
650 |
|
6 |
|a Catalyse.
|
650 |
|
6 |
|a Composés organiques
|x Synthèse.
|
650 |
|
7 |
|a SCIENCE
|x Chemistry
|x Organic.
|2 bisacsh
|
650 |
|
7 |
|a Catalysis
|2 fast
|
650 |
|
7 |
|a Chemical reactions
|2 fast
|
650 |
|
7 |
|a Organic compounds
|x Synthesis
|2 fast
|
650 |
|
7 |
|a Organic reaction mechanisms
|2 fast
|
700 |
1 |
|
|a Xu, Peng-Fei,
|d 1964-
|e editor.
|
700 |
1 |
|
|a Wang, Wei
|c (Associate professor of chemistry),
|e editor.
|
758 |
|
|
|i has work:
|a Catalytic cascade reactions (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFx9cMrC9YPdcGVwpQqQmd
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|t Catalytic cascade reactions.
|d Hoboken, New Jersey : Wiley, [2013]
|z 9781118016022
|w (DLC) 2013011112
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1443826
|z Texto completo
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 26316835
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1443826
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 647541
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis26316835
|
938 |
|
|
|a Recorded Books, LLC
|b RECE
|n rbeEB00063425
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11211860
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10350536
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12888431
|
994 |
|
|
|a 92
|b IZTAP
|