Cargando…

Microwaves in nanoparticle synthesis /

For the first time, this comprehensive handbook presents the emerging field of microwave technology for the synthesis of nanoparticles. Divided into three parts--fundamentals, methods, and applications--it covers topics including microwave theory, scale-up, microwave plasma synthesis, characterizati...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Horikoshi, Satoshi, Serpone, Nick, 1939-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Weinheim : Chichester : Wiley-VCH ; John Wiley [distributor], 2013.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Title page; Copyright page; Contents; Preface; List of Contributors; 1: Introduction to Nanoparticles; 1.1 General Introduction to Nanoparticles; 1.2 Methods of Nanoparticle Synthesis; 1.3 Surface Plasmon Resonance and Coloring; 1.4 Control of Size, Shape, and Structure; 1.4.1 Size Control of Nanoparticles; 1.4.2 Shape Control of Nanoparticles; 1.4.3 Structure Control of Nanoparticles; 1.5 Reducing Agent in Nanoparticle Synthesis; 1.6 Applications of Metallic Nanoparticles; 1.6.1 Application of Nanoparticles in Paints; 1.6.2 Application in Chemical Catalysis.
  • 1.6.3 Application of Nanoparticles in Micro-wiring1.6.4 Application of Nanoparticles in Medical Treatments; References; 2: General Features of Microwave Chemistry; 2.1 Microwave Heating; 2.2 Some Applications of Microwave Heating; 2.3 Microwave Chemistry; 2.3.1 Microwaves in Organic Syntheses; 2.3.2 Microwaves in Polymer Syntheses; 2.3.3 Microwaves in Inorganic Syntheses; 2.3.4 Microwave Extraction; 2.3.5 Microwave Discharge Electrodeless Lamps; 2.4 Microwave Chemical Reaction Equipment; References; 3: Considerations of Microwave Heating; 3.1 General Considerations of Microwave Heating.
  • 3.1.1 Electromagnetic Waves and a Dielectric Material3.1.2 Heating a Substance by the Microwaves' Alternating Electric Field; 3.1.3 Heating a Dielectric by the Microwaves' Alternating Magnetic Field; 3.1.4 Penetration Depth of Microwaves in a Dielectric Material; 3.1.5 Frequency Effects in Chemical Reactions; 3.2 Peculiar Microwave Heating; 3.2.1 Special Temperature Distribution; 3.2.2 Superheating; 3.2.3 Selective Heating in Chemical Reactions; 3.3 Relevant Points of Effective Microwave Heating; References; 4: Combined Energy Sources in the Synthesis of Nanomaterials; 4.1 Introduction.
  • 4.2 Simultaneous Ultrasound/Microwave Treatments4.3 Sequential Ultrasound and Microwaves; 4.3.1 Sequential Steps of the Same Reaction; 4.3.2 Sequential Reactions; 4.4 Conclusions; References; 5: Nanoparticle Synthesis through Microwave Heating; 5.1 Introduction; 5.2 Microwave Frequency Effects; 5.2.1 Synthesis of Ag Nanoparticles through the Efficient Use of 5.8-GHz Microwaves; 5.2.2 Metal Nanoparticle Synthesis through the Use of 915-MHz Microwaves; 5.3 Nanoparticle Synthesis under a Microwave Magnetic Field; 5.4 Synthesis of Metal Nanoparticles by a Greener Microwave Hydrothermal Method.
  • 5.5 Nanoparticle Synthesis with Microwaves under Cooling Conditions5.6 Positive Aspects of Microwaves' Thermal Distribution in Nanoparticle Synthesis; 5.7 Microwave-Assisted Nanoparticle Synthesis in Continuous Flow Apparatuses; 5.7.1 Microwave Desktop System of Nanoparticle Synthesis in a Continuous Flow Reactor; 5.7.2 Synthesis of Metal Nanoparticles with a Hybrid Microreactor/Microwave System; 5.7.3 Other Examples of Continuous Microwave Nanoparticle Synthesis Equipment; 5.7.4 Microwave Calcination Equipment for the Fabrication of Nanometallic Inks.