Cargando…

Compressive sensing for wireless networks /

Compressive sensing is a new signal processing paradigm that aims to encode sparse signals by using far lower sampling rates than those in the traditional Nyquist approach. It helps acquire, store, fuse and process large data sets efficiently and accurately. This method, which links data acquisition...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Han, Zhu, 1974-
Otros Autores: Li, Husheng, 1975-, Yin, Wotao
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, [2013]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn846495046
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 130603s2013 enk ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d CAMBR  |d YDXCP  |d EBLCP  |d IDEBK  |d CDX  |d COO  |d UMI  |d DEBSZ  |d OCLCQ  |d OCLCF  |d OCLCQ  |d UAB  |d OCLCQ  |d CEF  |d RRP  |d OCLCQ  |d WYU  |d LOA  |d K6U  |d VT2  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 858995456  |a 1066587813  |a 1107778590  |a 1109946150  |a 1111183252  |a 1117866835 
020 |a 9781107336568  |q (electronic bk.) 
020 |a 1107336562  |q (electronic bk.) 
020 |a 9781139088497  |q (electronic bk.) 
020 |a 1139088491  |q (electronic bk.) 
020 |a 9781299707665  |q (MyiLibrary) 
020 |a 1299707661  |q (MyiLibrary) 
020 |a 9781107326804 
020 |a 110732680X 
020 |a 9781107334908 
020 |a 110733490X 
020 |a 9781107333246  |q (e-book) 
020 |a 1107333245  |q (e-book) 
020 |z 9781107018839 
020 |z 1107018838 
029 1 |a AU@  |b 000052281218 
029 1 |a DEBBG  |b BV041432603 
029 1 |a DEBSZ  |b 384344674 
029 1 |a DEBSZ  |b 398285233 
029 1 |a NZ1  |b 15142994 
029 1 |a AU@  |b 000075666891 
035 |a (OCoLC)846495046  |z (OCoLC)858995456  |z (OCoLC)1066587813  |z (OCoLC)1107778590  |z (OCoLC)1109946150  |z (OCoLC)1111183252  |z (OCoLC)1117866835 
037 |a CL0500000298  |b Safari Books Online 
050 4 |a TK5102.92  |b .H355 2013eb 
072 7 |a COM  |x 020000  |2 bisacsh 
082 0 4 |a 621.39/81  |2 23 
049 |a UAMI 
100 1 |a Han, Zhu,  |d 1974-  |1 https://id.oclc.org/worldcat/entity/E39PCjyQdGgRVGrRkrHt4gp7BK 
245 1 0 |a Compressive sensing for wireless networks /  |c Zhu Han, University of Houston, USA, Husheng Li, University of Tennessee, USA, Wotao Yin, Rice University, USA. 
260 |a Cambridge :  |b Cambridge University Press,  |c [2013] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
520 |a Compressive sensing is a new signal processing paradigm that aims to encode sparse signals by using far lower sampling rates than those in the traditional Nyquist approach. It helps acquire, store, fuse and process large data sets efficiently and accurately. This method, which links data acquisition, compression, dimensionality reduction and optimization, has attracted significant attention from researchers and engineers in various areas. This comprehensive reference develops a unified view on how to incorporate efficiently the idea of compressive sensing over assorted wireless network scenarios, interweaving concepts from signal processing, optimization, information theory, communications and networking to address the issues in question from an engineering perspective. It enables students, researchers and communications engineers to develop a working knowledge of compressive sensing, including background on the basics of compressive sensing theory, an understanding of its benefits and limitations, and the skills needed to take advantage of compressive sensing in wireless networks. 
505 0 |a 1. Introduction -- 1.1. Motivation and objectives -- 1.2. Outline -- 2. Overview of wireless networks -- 2.1. Wireless channel models -- 2.1.1. Radio propagation -- 2.1.2. Interference channel -- 2.2. Categorization of wireless networks -- 2.2.1.3G cellular networks and beyond -- 2.2.2. WiMAX networks -- 2.2.3. WiFi networks 19 -- 2.2.4. Wireless personal area networks -- 2.2.5. Wireless ad hoc networks -- 2.2.6. Wireless sensor networks -- 2.3. Advanced wireless technology -- 2.3.1. OFDM technology -- 2.3.2. Multiple antenna system -- 2.3.3. Cognitive radios -- 2.3.4. Scheduling and multiple access -- 2.3.5. Wireless positioning and localization -- pt. I Compressive Sensing Technique -- 3.Compressive sensing framework -- 3.1. Background -- 3.2. Traditional sensing versus compressive sensing -- 3.3. Sparse representation -- 3.3.1. Extensions of sparse models -- 3.4. CS encoding and decoding -- 3.5. Examples -- 4. Sparse optimization algorithms. 
505 0 |a 4.1.A brief introduction to optimization -- 4.2. Sparse optimization models -- 4.3. Classic solvers -- 4.4. Shrinkage operation -- 4.4.1. Generalizations of shrinkage -- 4.5. Prox-linear algorithms -- 4.5.1. Forward-backward operator splitting -- 4.5.2. Examples -- 4.5.3. Convergence rates -- 4.6. Dual algorithms -- 4.6.1. Dual formulations -- 4.6.2. The augmented Lagrangian method -- 4.6.3. Bregman method -- 4.6.4. Bregman iterations and denoising -- 4.6.5. Linearized Bregman and augmented models -- 4.6.6. Handling complex data and variables -- 4.7. Alternating direction method of multipliers -- 4.7.1. Framework -- 4.7.2. Applications of ADM in sparse optimization -- 4.7.3. Applications in distributed optimization -- 4.7.4. Applications in decentralized optimization -- 4.7.5. Convergence rates -- 4.8.(Block) coordinate minimization and gradient descent -- 4.9. Homotopy algorithms and parametric quadratic programming -- 4.10. Continuation, varying step sizes, and line search. 
505 0 |a 4.11. Non-convex approaches for sparse optimization -- 4.12. Greedy algorithms -- 4.12.1. Greedy pursuit algorithms -- 4.12.2. Iterative support detection -- 4.12.3. Hard thresholding -- 4.13. Algorithms for low-rank matrices -- 4.14. How to choose an algorithm -- 5. CS analog-to-digital converter -- 5.1. Traditional ADC basics -- 5.1.1. Sampling theorem -- 5.1.2. Quantization -- 5.1.3. Practical implementation -- 5.2. Random demodulator ADC -- 5.2.1. Signal model -- 5.2.2. Architecture -- 5.3. Modulated wideband converter ADC -- 5.3.1. Architecture -- 5.3.2.Comparison with random demodulator -- 5.4. Xampling -- 5.4.1. Union of subspaces -- 5.4.2. Architecture -- 5.4.3.X-ADC and hardware implementation -- 5.4.4.X-DSP and subspace algorithms -- 5.5. Other architecture -- 5.5.1. Random sampling -- 5.5.2. Random filtering -- 5.5.3. Random delay line -- 5.5.4. Miscellaneous literature -- 5.6. Summary -- pt. II CS-Based Wireless Communication -- 6.Compressed channel estimation. 
505 0 |a 6.1. Introduction and motivation -- 6.2. Multipath channel estimation -- 6.2.1. Channel model and training-based method -- 6.2.2.Compressed channel sensing -- 6.3. OFDM channel estimation -- 6.3.1. System model -- 6.3.2.Compressive sensing OFDM channel estimator -- 6.3.3. Numerical algorithm -- 6.3.4. Numerical simulations -- 6.4. Underwater acoustic channel estimation -- 6.4.1. Channel model -- 6.4.2.Compressive sensing algorithms -- 6.5. Random field estimation -- 6.5.1. Random field model -- 6.5.2. Matrix completion algorithm -- 6.5.3. Simulation results -- 6.6. Other channel estimation methods -- 6.6.1. Blind channel estimation -- 6.6.2. Adaptive algorithm -- 6.6.3. Group sparsity method -- 6.7. Summary -- 7. Ultra-wideband systems -- 7.1.A brief introduction to UWB -- 7.1.1. History and applications -- 7.1.2. Characteristics of UWB -- 7.1.3. Mathematical model of UWB -- 7.2.Compression of UWB -- 7.2.1. Transmitter side compression -- 7.2.2. Receiver side compression. 
505 0 |a 7.3. Reconstruction of UWB -- 7.3.1. Block reconstruction -- 7.3.2. Bayesian reconstruction -- 7.3.3.Computational issue -- 7.4. Direct demodulation in UWB communications -- 7.4.1. Transceiver structures -- 7.4.2. Demodulation -- 7.5. Conclusions -- 8. Positioning -- 8.1. Introduction to positioning -- 8.2. Direct application of compressive sensing -- 8.2.1. General principle -- 8.2.2. Positioning in WLAN -- 8.2.3. Positioning in cognitive radio -- 8.2.4. Dynamic compressive sensing -- 8.3. Indirect application of compressive sensing -- 8.3.1. UWB positioning system -- 8.3.2. Space-time compressive sensing -- 8.3.3. Joint compressive sensing and TDOA -- 8.4. Conclusions -- 9. Multiple access -- 9.1. Introduction -- 9.2. Introduction to multiuser detection -- 9.2.1. System model for CDMA -- 9.2.2.Comparison between multiuser detection and compressive sensing -- 9.2.3. Various algorithms of multiuser detection -- 9.2.4. Optimal multiuser detector. 
505 0 |a 9.3. Multiple access in cellular systems -- 9.3.1. Uplink -- 9.3.2. Downlink -- 9.4. Multiple access in sensor networks -- 9.4.1. Single hop -- 9.4.2. Multiple hops -- 9.5. Conclusions -- 10. Cognitive radio networks -- 10.1. Introduction -- 10.2. Literature review -- 10.3.Compressive sensing-based collaborative spectrum sensing -- 10.3.1. System model -- 10.3.2. CSS matrix completion algorithm -- 10.3.3. CSS joint sparsity recovery algorithm -- 10.3.4. Discussion -- 10.3.5. Simulations -- 10.4. Dynamic approach -- 10.4.1. System model -- 10.4.2. Dynamic recovery algorithm -- 10.4.3. Simulations -- 10.5. Joint consideration with localization -- 10.5.1. System model -- 10.5.2. Joint spectrum sensing and localization algorithm -- 10.5.3. Simulations -- 10.6. Summary. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Coding theory. 
650 0 |a Data compression (Telecommunication) 
650 0 |a Signal processing  |x Digital techniques. 
650 0 |a Sampling (Statistics) 
650 6 |a Données  |x Compression (Télécommunications) 
650 6 |a Traitement du signal  |x Techniques numériques. 
650 6 |a Échantillonnage (Statistique) 
650 7 |a COMPUTERS  |x Data Transmission Systems  |x General.  |2 bisacsh 
650 7 |a Coding theory  |2 fast 
650 7 |a Data compression (Telecommunication)  |2 fast 
650 7 |a Sampling (Statistics)  |2 fast 
650 7 |a Signal processing  |x Digital techniques  |2 fast 
700 1 |a Li, Husheng,  |d 1975-  |1 https://id.oclc.org/worldcat/entity/E39PCjr6bgB8Mh7wvpjJCpJfVP 
700 1 |a Yin, Wotao. 
758 |i has work:  |a Compressive sensing for wireless networks (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFHcCxBXX3pY7TRVTr7fv3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Han, Zhu, 1974-  |t Compressive sensing for wireless networks.  |d Cambridge : Cambridge University Press, [2013]  |z 9781107018839  |w (DLC) 2013000272  |w (OCoLC)813939031 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1139587  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25220244 
938 |a Askews and Holts Library Services  |b ASKH  |n AH28318935 
938 |a Coutts Information Services  |b COUT  |n 25780713 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1139587 
938 |a EBSCOhost  |b EBSC  |n 539312 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25780713 
938 |a YBP Library Services  |b YANK  |n 10755530 
938 |a YBP Library Services  |b YANK  |n 10794871 
938 |a YBP Library Services  |b YANK  |n 10745687 
938 |a YBP Library Services  |b YANK  |n 10762288 
994 |a 92  |b IZTAP