|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
EBOOKCENTRAL_ocn846495034 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
130603s2013 njua ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d E7B
|d EBLCP
|d CUS
|d YDXCP
|d DG1
|d CUS
|d OCLCA
|d CUI
|d NOC
|d OCLCO
|d TEFOD
|d OCLCF
|d DG1
|d OCLCQ
|d OCLCO
|d UAT
|d RRP
|d DEBSZ
|d OCLCQ
|d TEFOD
|d COO
|d OCLCQ
|d AZK
|d MOR
|d LIP
|d PIFPO
|d ZCU
|d MERUC
|d OCLCQ
|d U3W
|d MERER
|d COCUF
|d CUY
|d OCLCQ
|d STF
|d WRM
|d NRAMU
|d ICG
|d INT
|d AU@
|d OCLCQ
|d OTZ
|d TKN
|d OCLCQ
|d DKC
|d OCLCQ
|d UKAHL
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCL
|
066 |
|
|
|c (S
|
019 |
|
|
|a 858352650
|a 961543118
|a 962680869
|
020 |
|
|
|a 9781118641835
|q (electronic bk.)
|
020 |
|
|
|a 1118641833
|q (electronic bk.)
|
020 |
|
|
|a 9781118642047
|q (electronic bk.)
|
020 |
|
|
|a 111864204X
|q (electronic bk.)
|
020 |
|
|
|a 9781118641941
|q (electronic bk.)
|
020 |
|
|
|a 1118641949
|q (electronic bk.)
|
020 |
|
|
|z 9780470541951
|
020 |
|
|
|z 0470541954
|
029 |
1 |
|
|a AU@
|b 000053306379
|
029 |
1 |
|
|a CHNEW
|b 000941978
|
029 |
1 |
|
|a CHVBK
|b 480222576
|
029 |
1 |
|
|a DEBBG
|b BV044050255
|
029 |
1 |
|
|a DEBSZ
|b 431428786
|
029 |
1 |
|
|a DEBSZ
|b 48503865X
|
029 |
1 |
|
|a NZ1
|b 15179379
|
029 |
1 |
|
|a NZ1
|b 15341751
|
035 |
|
|
|a (OCoLC)846495034
|z (OCoLC)858352650
|z (OCoLC)961543118
|z (OCoLC)962680869
|
037 |
|
|
|a 47890E1F-8C7C-42E0-ABED-D3E73CCD1B8F
|b OverDrive, Inc.
|n http://www.overdrive.com
|
050 |
|
4 |
|a TP248.3
|
072 |
|
7 |
|a SCI
|x 010000
|2 bisacsh
|
082 |
0 |
4 |
|a 660.6/3
|2 23
|
084 |
|
|
|a TEC009010
|2 bisacsh
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers /
|c edited by Shang-Tian Yang, Hesham A. El-Enshasy, Nuttha Thongchul.
|
260 |
|
|
|a Hoboken, N.J. :
|b Wiley ;
|a [New York] :
|b AIChE,
|c ©2013.
|
300 |
|
|
|a 1 online resource (xxii, 466 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
520 |
|
|
|a "For researchers already familiar with biomass conversion technologies and for professionals in other fields, such as agriculture, food, and chemical industries, here is a comprehensive review of the emerging biorefinery industry. The book's content has been conveniently organized according to technologies (biomass feedstock and pretreatment, hydrolytic enzymes in biorefinery, and biofuels), with each chapter highlighting an important biobased industrial product. For undergraduate and graduate students, the book is a thorough introduction to biorefinery technologies"--
|c Provided by publisher.
|
588 |
0 |
|
|a Online resource; title from PDF title page (Wiley, viewed July 23, 2013).
|
505 |
0 |
|
|6 880-01
|a Cover; Title page; Copyright page; Contents; Preface; Contributors; 1: Integrated Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers; 1.1 Introduction; 1.2 Biorefineries Using Corn, Soybeans, and Sugarcane; 1.2.1 Corn Refinery; 1.2.2 Soybean Biorefinery; 1.2.3 Sugarcane Biorefinery; 1.3 Lignocellulosic Biorefinery; 1.3.1 Pretreatment; 1.3.2 Cellulose Hydrolysis and Saccharification; 1.3.3 Fermentation; 1.3.4 Plant Genetic Engineering to Improve Biomass Feedstock; 1.3.5 Thermochemical Platform for Lignocellulosic Biorefinery; 1.4 Aquacultures and Algae Biorefinery.
|
505 |
8 |
|
|a 1.5 Chemical and Biological Conversions for Fuel and Chemical Production1.5.1 Biofuels; 1.5.2 Bio-Based Chemicals; 1.5.3 Hybrid Chemical and Biological Conversion Processes; 1.5.4 Biorefinery Feedstock Economics; 1.6 Conclusions and Future Prospects; References; 2: The Outlook of Sugar and Starch Crops in Biorefinery; 2.1 Introduction; 2.2 Sugar Crops; 2.2.1 Sugarcane; 2.2.2 Sugar Beet; 2.2.3 Sweet Sorghum; 2.3 Starch Crops; 2.3.1 Corn; 2.3.2 Potato; 2.3.3 Wheat; 2.3.4 Cassava; 2.3.5 Rice; 2.4 Uses of Sugar and Starch Crops in Biorefinery; 2.4.1 Use of Sugar Crops in Biorefinery.
|
505 |
8 |
|
|a 2.4.2 Use of Starch Crops in Biorefinery2.5 Conclusion; References; 3: Novel and Traditional Oil Crops and Their Biorefinery Potential; 3.1 Introduction; 3.2 Oil Crop Breeding and Its Bioprocessing Potential; 3.3 Novel Oil Crops; 3.3.1 Jatropha; 3.3.2 Pongamia; 3.3.3 Lesquerella and Cuphea; 3.3.4 Camelina and Crambe; 3.3.5 Other New Oil Crops; 3.4 Traditional Oil Crops; 3.4.1 Soybean; 3.4.2 Oilseed Rape; 3.4.3 Sunflower; 3.4.4 Linseed (Flax); 3.4.5 Cottonseed; 3.4.6 Castor Bean; 3.4.7 Oil Palm; 3.5 Perspectives for Nonfood Oil Crop Production; References; 4: Energy Crops.
|
505 |
8 |
|
|a 4.1 What Are Dedicated Energy Crops?4.1.1 Toward Second-Generation Biofuels; 4.2 Annual Crops; 4.2.1 Maize (Zea mays); 4.2.2 Sorghum (Sorghum bicolor); 4.2.3 Sugar Beet (Beta vulgaris); 4.2.4 Hemp (Cannabis sativa); 4.3 Perennial Herbaceous Crops; 4.3.1 Sugarcane (Saccharum spp.); 4.3.2 Switchgrass (Panicum virgatum); 4.3.3 Miscanthus (Miscanthus spp.); 4.4 Short Rotation Woody Crops; 4.4.1 Poplar (Populus spp.) and Willow (Salix spp.); 4.5 Why Grow Energy Crops?; 4.6 Barriers to Energy Crops; 4.7 Conclusions; References; 5: Microalgae as Feedstock for Biofuels and Biochemicals.
|
505 |
8 |
|
|a 5.1 Introduction5.2 The Importance of Microalgae as Feedstock for Biofuels and Biochemicals; 5.2.1 Biochemical Components and Nutrients in Microalgae; 5.2.2 Advantages of Microalgae for Industrial Purpose; 5.3 New Techniques for Screening and Selecting Microalgae; 5.3.1 High-Throughput Screening (HTS) by Fluorescent Techniques; 5.3.2 High-Throughput Sorting (HTS) by Flow Cytometry; 5.3.3 Rapid Evaluation Techniques for Lipid; 5.4 Production of Microalgal Biomass in Industry; 5.4.1 Mass Cultivation Outdoors and the Challenge; 5.4.2 Heterotrophic and Mixotrophic Cultures.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Biochemical engineering.
|
650 |
|
0 |
|a Microbiological synthesis.
|
650 |
|
0 |
|a Sustainable engineering.
|
650 |
|
6 |
|a Génie biochimique.
|
650 |
|
6 |
|a Synthèse microbiologique.
|
650 |
|
6 |
|a Ingénierie durable.
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Chemical & Biochemical.
|2 bisacsh
|
650 |
|
7 |
|a SCIENCE
|x Biotechnology.
|2 bisacsh
|
650 |
|
7 |
|a Biochemical engineering
|2 fast
|
650 |
|
7 |
|a Microbiological synthesis
|2 fast
|
650 |
|
7 |
|a Sustainable engineering
|2 fast
|
700 |
1 |
|
|a Yang, Shang-Tian.
|
700 |
1 |
|
|a El Enshasy, Hesham.
|
700 |
1 |
|
|a Thongchul, Nuttha.
|
758 |
|
|
|i has work:
|a Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFKyhmmY9W3k4gwR4BFbBd
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|t Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers.
|d Hoboken, New Jersey : AIChE : Wiley, 2013
|z 9780470541951
|w (DLC) 2012049906
|w (OCoLC)830989439
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1204851
|z Texto completo
|
880 |
0 |
0 |
|6 505-00/(S
|g Contents note continued:
|g 12.
|t Biodiesel Properties and Alternative Feedstocks /
|r Bryan R. Moser --
|g 12.1.
|t Introduction --
|g 12.2.
|t Biodiesel Standards --
|g 12.3.
|t Catalysts --
|g 12.4.
|t Preparation of Fatty Acid Methyl Esters --
|g 12.5.
|t Preparation of Fatty Acid Ethyl Esters --
|g 12.6.
|t Influence of Free Fatty Acids on Biodiesel Production --
|g 12.7.
|t Alternative Production Methods --
|g 12.8.
|t Advantages and Disadvantages of Biodiesel --
|g 12.9.
|t Typical Fatty Acids Found in Most Vegetable Oil Feedstocks --
|g 12.10.
|t Influence of Biodiesel Composition on Fuel Properties --
|g 12.10.1.
|t Low Temperature Properties --
|g 12.10.2.
|t Oxidative Stability --
|g 12.10.3.
|t Kinematic Viscosity --
|g 12.10.4.
|t Exhaust Emissions --
|g 12.10.5.
|t Cetane Number --
|g 12.10.6.
|t Heat of Combustion --
|g 12.10.7.
|t Lubricity --
|g 12.10.8.
|t Contaminants --
|g 12.10.9.
|t Minor Components --
|g 12.11.
|t Why Alternative Feedstocks for Biodiesel Production--
|g 12.12.
|t Alternative Oilseed Feedstocks --
|g 12.13.
|t Animal Fats --
|g 12.14.
|t Other Waste Oils --
|g 12.14.1.
|t Integrated Biorefinery Production of Biodiesel --
|g 12.15.
|t Microalgae --
|g 12.16.
|t Future Outlook for Biodiesel --
|t References --
|g 13.
|t Biological Production of Butanol and Higher Alcohols /
|r Shang-Tian Yang --
|g 13.1.
|t Introduction --
|g 13.2.
|t Industrial Acetone-Butanol-Ethanol (ABE) Fermentation for n-Butanol Production --
|g 13.3.
|t n-Butanol Production by Solventogenic Clostridium --
|g 13.3.1.
|t Solventogenic Clostridium --
|g 13.3.2.
|t ABE Biosynthesis Pathway and Fermentation Kinetics --
|g 13.3.3.
|t Strain Development for Improved ABE Fermentation --
|g 13.3.4.
|t Metabolic Engineering of Solventogenic Clostridium --
|g 13.3.5.
|t Alternative Feedstock for ABE Fermentation --
|g 13.3.6.
|t ABE Fermentation Process Development --
|g 13.3.7.
|t Butanol Separation and Integrated Fermentation with In Situ Product Recovery --
|g 13.4.
|t Engineering Microorganisms for Biosynthesis of Higher Alcohols --
|g 13.4.1.
|t Engineering the Clostridial n-Butanol Fermentative Pathway --
|g 13.4.2.
|t Biosynthesis of n-Butanol Using Reversed β-Oxidation Cycle --
|g 13.4.3.
|t Engineering the Keto Acid Pathway for Butanol Biosynthesis --
|g 13.4.4.
|t Biosynthesis of Isopropanol and n-Propanol --
|g 13.4.5.
|t Biosynthesis of 2-Butanol --
|g 13.4.6.
|t Biosynthesis of Pentanol and Higher Alcohols --
|g 13.5.
|t Production of Higher Alcohols by Hybrid Biochemical Process --
|g 13.6.
|t Conclusions and Future Perspectives --
|t References --
|g 14.
|t Advancement of Biohydrogen Production and Its Integration with Fuel Cell Technology /
|r Tai Hyun Park --
|g 14.1.
|t Introduction --
|g 14.2.
|t Biophotolysis --
|g 14.3.
|t Photodecomposition --
|g 14.4.
|t Dark Fermentation --
|g 14.4.1.
|t Dark Fermentation by Strict Anaerobes --
|g 14.4.2.
|t Dark Fermentation by Facultative Anaerobes --
|g 14.4.3.
|t Dark Fermentation by Thermophilic Microorganism --
|g 14.5.
|t Factors Influencing Hydrogen Production in Dark Fermentation --
|g 14.6.
|t Genetic Modification of Fermentative Bacteria --
|g 14.7.
|t Other Efforts for the Production of Biohydrogen --
|g 14.8.
|t Integration of Biohydrogen Production System with Fuel Cell --
|g 14.9.
|t Conclusion --
|t Acknowledgments --
|t References --
|g 15.
|t Biogas Technology /
|r Gunter Busch --
|g 15.1.
|t Introduction --
|g 15.2.
|t Fundamentals of the Biogas Process --
|g 15.2.1.
|t Characterization of Substrates --
|g 15.2.2.
|t Basic Processes, Process Conditions --
|g 15.2.3.
|t Process Disturbances --
|g 15.3.
|t Process Layout and Fermenter Design --
|g 15.3.1.
|t Single-, Double- and Multistage Reactors --
|g 15.3.2.
|t Agitation --
|g 15.3.3.
|t Dry and Wet Fermentations --
|g 15.3.4.
|t Heating of the System --
|g 15.3.5.
|t Methanation Reactor with Concentration of Active Biomass --
|g 15.3.6.
|t Fermentor Design --
|g 15.3.7.
|t Pretreatment of Substrates --
|g 15.3.8.
|t After-Treatment of Process Residues --
|g 15.3.9.
|t Biogas Purification (H2S Removal) --
|g 15.4.
|t Biogas from Biowaste and Municipal Solid Waste --
|t References --
|g 16.
|t Production of Lactic Acid and Polylactic Acid for Industrial Applications /
|r Nuttha Thongchul --
|g 16.1.
|t History of Lactic Acid --
|g 16.2.
|t Properties of Lactic Acid --
|g 16.3.
|t Applications and Market of Lactic Acid and Its Derivative, Polylactic Acid --
|g 16.4.
|t Lactic Acid Fermentation --
|g 16.4.1.
|t Bacterial Fermentation --
|g 16.4.2.
|t Fungal Fermentation --
|g 16.5.
|t Lactic Acid Recovery from Fermentation Broth --
|g 16.5.1.
|t Reactive Extraction --
|g 16.5.2.
|t Adsorption --
|g 16.5.3.
|t Electrodialysis --
|g 16.5.4.
|t Esterification and Reactive Distillation --
|g 16.5.5.
|t Viable Downstream Process for Lactic Acid Production --
|g 16.6.
|t Overview of Polylactic Syntheses --
|g 16.6.1.
|t ROP --
|g 16.6.2.
|t Azeotropic Dehydrative Condensation (Direct Polycondensation) --
|g 16.7.
|t Concluding Remarks --
|t References --
|g 17.
|t Production of Succinic Acid from Renewable Resources /
|r Sang Yup Lee --
|g 17.1.
|t Overview --
|g 17.2.
|t Development of Succinic Acid Producers --
|g 17.2.1.
|t A. succiniciproducens --
|g 17.2.2.
|t A. succinogenes --
|g 17.2.3.
|t M. succiniciproducens --
|g 17.2.4.
|t C. glutamicum --
|g 17.2.5.
|t E. coli --
|g 17.3.
|t Carbon Sources --
|g 17.4.
|t Fermentation Process Optimization --
|g 17.5.
|t Succinic Acid Recovery and Purification --
|g 17.5.1.
|t Centrifugation and Filtration --
|g 17.5.2.
|t Precipitation --
|g 17.5.3.
|t Reactive Extraction --
|g 17.5.4.
|t Electrodialysis --
|g 17.5.5.
|t Ion Exchange and Crystallization --
|g 17.6.
|t Future Perspectives on the Bio-Based Succinic Acid Production --
|t Acknowledgments --
|t References --
|g 18.
|t Propionic Acid Fermentation /
|r Shang-Tian Yang --
|g 18.1.
|t Introduction --
|g 18.2.
|t Propionic Acid Bacteria --
|g 18.2.1.
|t Propionibacteria --
|g 18.2.2.
|t Dairy Propionibacteria --
|g 18.2.3.
|t Dicarboxylic Acid Pathway --
|g 18.2.4.
|t Acrylic Acid Pathway --
|g 18.3.
|t Metabolic Engineering of Propionibacteria --
|g 18.3.1.
|t Genetics and Cloning Vectors --
|g 18.3.2.
|t Transformation --
|g 18.3.3.
|t Genetic and Metabolic Engineering --
|g 18.4.
|t Fermentation Processes --
|g 18.4.1.
|t Propionic Acid Production from Renewable Feedstocks --
|g 18.4.2.
|t Free-Cell Fermentation Processes --
|g 18.4.3.
|t Immobilized-Cell Fermentation --
|g 18.4.4.
|t Fibrous-Bed Bioreactor --
|g 18.5.
|t Fermentation with In Situ Product Recovery --
|g 18.6.
|t Conclusions and Future Perspectives --
|t References --
|g 19.
|t Anaerobic Fermentations for the Production of Acetic and Butyric Acids /
|r I-Ching Tang --
|g 19.1.
|t Introduction --
|g 19.2.
|t Microbial Production of Acetic Acid --
|g 19.2.1.
|t Anaerobic Homoacetogens --
|g 19.2.2.
|t Metabolic Pathways of Homoacetogen --
|g 19.2.3.
|t Homoacetogenic Fermentation --
|g 19.3.
|t Microbial Production of Butyric Acid --
|g 19.3.1.
|t Butyric Acid Bacteria --
|g 19.3.2.
|t Metabolic Pathway of Butyrate Production --
|g 19.3.3.
|t Factors Affecting Butyric Acid Fermentation --
|g 19.3.4.
|t Butyric Acid Fermentation --
|g 19.4.
|t Metabolic Engineering of Acidogenic Clostridia --
|g 19.4.1.
|t Genomic Sequences --
|g 19.4.2.
|t Clostridia Cloning Vectors --
|g 19.4.3.
|t Gene Knockout and Overexpression --
|g 19.5.
|t Fermentation Processes for Carboxylic Acids Production --
|g 19.5.1.
|t Operating Mode --
|g 19.5.2.
|t Immobilized-Cell Bioreactor --
|g 19.5.3.
|t Extractive Fermentation --
|g 19.6.
|t Separation Methods for Carboxylic Acid Recovery from Fermentation Broth --
|g 19.6.1.
|t Precipitation --
|g 19.6.2.
|t Extraction --
|g 19.6.3.
|t Adsorption --
|g 19.6.4.
|t Electrodialysis --
|g 19.7.
|t Conclusions --
|t References --
|g 20.
|t Production of Citric, Itaconic, Fumaric, and Malic Acids in Filamentous Fungal Fermentations /
|r Shang-Tian Yang --
|g 20.1.
|t Introduction --
|g 20.2.
|t History and Current Production Methods --
|g 20.3.
|t Microorganisms --
|g 20.4.
|t Metabolic Pathways for Carboxylic Acid Biosynthesis in Filamentous Fungi --
|g 20.4.1.
|t Glycolysis --
|g 20.4.2.
|t TCA Cycle --
|g 20.4.3.
|t Transportation --
|g 20.4.4.
|t Cytoplasmic Pathways --
|g 20.5.
|t Metabolic Engineering and Systems Biology for Strain Improvement --
|g 20.6.
|t Filamentous Fungal Fermentation Process --
|g 20.6.1.
|t Bioreactor and Morphology Control --
|g 20.6.2.
|t Fermentation Media --
|g 20.6.3.
|t pH and Neutralizing Agent --
|g 20.6.4.
|t Dissolved Oxygen --
|g 20.6.5.
|t Temperature --
|g 20.7.
|t Product Separation and Purification --
|g 20.8.
|t Conclusions and Future Prospects --
|t Acknowledgments --
|t References --
|g 21.
|t Biotechnological Development for the Production of 1,3-Propanediol and 2,3-Butanediol /
|r Kyung-Duk Kim --
|g 21.1.
|t Introduction --
|g 21.2.
|t Microbial Production of 1,3-Propanediol --
|g 21.2.1.
|t 1,3-Propanediol --
|g 21.2.2.
|t Production of 1,3-Propanediol by the Klebsiella Species --
|g 21.2.3.
|t Production of 1,3-Propanediol by the Clostridium butyricum Strains --
|g 21.2.4.
|t Expression of
|
880 |
0 |
0 |
|t Heterologous Genes for 1,3-Propanediol Production --
|g 21.3.
|t Microbial Production of 2,3-Butanediol --
|g 21.3.1.
|t 2,3-Butanediol --
|g 21.3.2.
|t Microorganisms and Pathways --
|g 21.3.3.
|t Use of Sugars as Substrates for 2,3-Butanediol Production --
|g 21.3.4.
|t Use of Lignocellulosic Materials for 2,3-Butanediol Production --
|g 21.3.5.
|t Glycerol as a Substrate for 2,3-Butanediol Production --
|g 21.3.6.
|t Effect of Organic Acid Addition on 2,3-Butanediol Production --
|g 21.3.7.
|t Genetic Modification for 2,3-Butanediol Production --
|g 21.4.
|t Conclusion --
|t References --
|g 22.
|t Production of Polyhydroxyalkanoates in Biomass Refining /
|r Jian Yu --
|g 22.1.
|t Introduction --
|g 22.1.1.
|t Polyhydroxyalkanoates and Biomass Refining --
|g 22.1.2.
|t Biomass Derivates and Microbial Toxicity --
|g 22.1.3.
|t PHA Bioprocess --
|g 22.2.
|t Microbial Synthesis of Polyhydroxyalkanoates --
|g 22.2.1.
|t Metabolic Pathways of PHA Formation --
|g 22.2.2.
|t PHA Fermentation on Glucose or Xylose --
|g 22.2.3.
|t PHA Fermentation on Levulinic Acid --
|g 22.2.4.
|t PHA Fermentation in Hydrolysates Solution --
|g 22.3.
|t Recovery and Purification of PHA Biopolyesters --
|g 22.3.1.
|t Technologies and Challenges --
|g 22.3.2.
|t Dissolution of non-PHA Cell Mass --
|g 22.3.3.
|t Partial Crystallization and Recovery of P3HB Granules --
|g 22.4.
|t Conclusion.
|
880 |
0 |
0 |
|6 505-00/(S
|g Machine generated contents note:
|g 1.
|t Integrated Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers /
|r Mingrui Yu --
|g 1.1.
|t Introduction --
|g 1.2.
|t Biorefineries Using Corn, Soybeans, and Sugarcane --
|g 1.2.1.
|t Corn Refinery --
|g 1.2.2.
|t Soybean Biorefinery --
|g 1.2.3.
|t Sugarcane Biorefinery --
|g 1.3.
|t Lignocellulosic Biorefinery --
|g 1.3.1.
|t Pretreatment --
|g 1.3.2.
|t Cellulose Hydrolysis and Saccharification --
|g 1.3.3.
|t Fermentation --
|g 1.3.4.
|t Plant Genetic Engineering to Improve Biomass Feedstock --
|g 1.3.5.
|t Thermochemical Platform for Lignocellulosic Biorefinery --
|g 1.4.
|t Aquacultures and Algae Biorefinery --
|g 1.5.
|t Chemical and Biological Conversions for Fuel and Chemical Production --
|g 1.5.1.
|t Biofuels --
|g 1.5.2.
|t Bio-Based Chemicals --
|g 1.5.3.
|t Hybrid Chemical and Biological Conversion Processes --
|g 1.5.4.
|t Biorefinery Feedstock Economics --
|g 1.6.
|t Conclusions and Future Prospects --
|t References --
|g 2.
|t Outlook of Sugar and Starch Crops in Biorefinery /
|r Kuakoon Piyachomkwan --
|g 2.1.
|t Introduction --
|g 2.2.
|t Sugar Crops --
|g 2.2.1.
|t Sugarcane --
|g 2.2.2.
|t Sugar Beet --
|g 2.2.3.
|t Sweet Sorghum --
|g 2.3.
|t Starch Crops --
|g 2.3.1.
|t Corn --
|g 2.3.2.
|t Potato --
|g 2.3.3.
|t Wheat --
|g 2.3.4.
|t Cassava --
|g 2.3.5.
|t Rice --
|g 2.4.
|t Uses of Sugar and Starch Crops in Biorefinery --
|g 2.4.1.
|t Use of Sugar Crops in Biorefinery --
|g 2.4.2.
|t Use of Starch Crops in Biorefinery --
|g 2.5.
|t Conclusion --
|t References --
|g 3.
|t Novel and Traditional Oil Crops and Their Biorefinery Potential /
|r Margit Laimer --
|g 3.1.
|t Introduction --
|g 3.2.
|t Oil Crop Breeding and Its Bioprocessing Potential --
|g 3.3.
|t Novel Oil Crops --
|g 3.3.1.
|t Jatropha --
|g 3.3.2.
|t Pongamia --
|g 3.3.3.
|t Lesquerella and Cuphea --
|g 3.3.4.
|t Camelina and Crambe --
|g 3.3.5.
|t Other New Oil Crops --
|g 3.4.
|t Traditional Oil Crops --
|g 3.4.1.
|t Soybean --
|g 3.4.2.
|t Oilseed Rape --
|g 3.4.3.
|t Sunflower --
|g 3.4.4.
|t Linseed (Flax) --
|g 3.4.5.
|t Cottonseed --
|g 3.4.6.
|t Castor Bean --
|g 3.4.7.
|t Oil Palm --
|g 3.5.
|t Perspectives for Nonfood Oil Crop Production --
|t References --
|g 4.
|t Energy Crops /
|r Andrea Monti --
|g 4.1.
|t What Are Dedicated Energy Crops--
|g 4.1.1.
|t Toward Second-Generation Biofuels --
|g 4.2.
|t Annual Crops --
|g 4.2.1.
|t Maize (Zea mays) --
|g 4.2.2.
|t Sorghum (Sorghum bicolor) --
|g 4.2.3.
|t Sugar Beet (Beta vulgaris) --
|g 4.2.4.
|t Hemp (Cannabis sativa) --
|g 4.3.
|t Perennial Herbaceous Crops --
|g 4.3.1.
|t Sugarcane (Saccharum spp.) --
|g 4.3.2.
|t Switchgrass (Panicum virgatum) --
|g 4.3.3.
|t Miscanthus (Miscanthus spp.) --
|g 4.4.
|t Short Rotation Woody Crops --
|g 4.4.1.
|t Poplar (Populus spp.) and Willow (Salix spp.) --
|g 4.5.
|t Why Grow Energy Crops--
|g 4.6.
|t Barriers to Energy Crops --
|g 4.7.
|t Conclusions --
|t References --
|g 5.
|t Microalgae as Feedstock for Biofuels and Biochemicals /
|r Dong Wei --
|g 5.1.
|t Introduction --
|g 5.2.
|t Importance of Microalgae as Feedstock for Biofuels and Biochemicals --
|g 5.2.1.
|t Biochemical Components and Nutrients in Microalgae --
|g 5.2.2.
|t Advantages of Microalgae for Industrial Purpose --
|g 5.3.
|t New Techniques for Screening and Selecting Microalgae --
|g 5.3.1.
|t High-Throughput Screening (HTS) by Fluorescent Techniques --
|g 5.3.2.
|t High-Throughput Sorting (HTS) by Flow Cytometry --
|g 5.3.3.
|t Rapid Evaluation Techniques for Lipid --
|g 5.4.
|t Production of Microalgal Biomass in Industry --
|g 5.4.1.
|t Mass Cultivation Outdoors and the Challenge --
|g 5.4.2.
|t Heterotrophic and Mixotrophic Cultures --
|g 5.5.
|t Bioprocessing of Microalgae as Feedstock for Biofuel Production --
|g 5.5.1.
|t Biodiesel Production by Immobilized Lipase --
|g 5.5.2.
|t Bioethanol Production by Anaerobic Fermentation --
|g 5.5.3.
|t Biomethane and Biohydrogen Production by Anaerobic Fermentation --
|g 5.6.
|t Conclusion and Future Prospects --
|t References --
|g 6.
|t Pretreatment of Lignocellulosic Biomass /
|r Tae Hyun Kim --
|g 6.1.
|t Introduction --
|g 6.2.
|t Structure and Composition of Lignocellulosic Biomass --
|g 6.2.1.
|t Cellulose --
|g 6.2.2.
|t Hemicellulose --
|g 6.2.3.
|t Lignin --
|g 6.2.4.
|t Extractives --
|g 6.3.
|t Challenges in Bioconversion of Lignocellulosic Biomass --
|g 6.3.1.
|t Chemical Barriers --
|g 6.3.2.
|t Physical Barriers --
|g 6.4.
|t Pretreatment Technologies --
|g 6.4.1.
|t Alkali (Sodium Hydroxide, Ammonia, and Lime) --
|g 6.4.2.
|t Autohydrolysis (Hot-Water and Steam Explosion) --
|g 6.4.3.
|t Acid --
|g 6.4.4.
|t Other Pretreatments --
|g 6.4.5.
|t Severity Factor --
|g 6.5.
|t Pretreatment Strategies in Bioconversion of Lignocellulosic Biomass into Fuels and Chemicals --
|g 6.6.
|t Pretreatment or Fractionation: A Role of Pretreatment in the Biorefinery Concept --
|g 6.7.
|t Integration of Pretreatment into the Biomass Conversion Process --
|t Acknowledgments --
|t References --
|g 7.
|t Amylases: Characteristics, Sources, Production, and Applications /
|r Nor Zalina Othman --
|g 7.1.
|t Introduction --
|g 7.2.
|t Starch (The Amylases Substrate) --
|g 7.3.
|t Amylases in Nature --
|g 7.4.
|t Types of Amylases --
|g 7.4.1.
|t α-Amylase (EC 3.2.1.1; CAS# 9000-90-2) --
|g 7.4.2.
|t β-Amylase (EC 3.2.1.2; CAS# 9000-91-3) --
|g 7.4.3.
|t Glucoamylase or γ-Amylase (EC 3.2.1.3; CAS# 9032-08-0) --
|g 7.4.4.
|t Pullulanase (EC 3.2.1.41; CAS# 9075-68-7) --
|g 7.5.
|t Amylase Mode of Action --
|g 7.6.
|t Amylase Family Classification --
|g 7.7.
|t Amylase Structure --
|g 7.7.1.
|t Starch-Binding Domains (SBDs) --
|g 7.8.
|t Industrial Production --
|g 7.8.1.
|t α-Amylase --
|g 7.8.2.
|t β-Amylase --
|g 7.8.3.
|t Glucoamylase --
|g 7.8.4.
|t Amylases Production from Starchy and Nonstarch Feedstocks --
|g 7.9.
|t Amylase Stability --
|g 7.9.1.
|t Production by Extremophilic Microorganisms --
|g 7.9.2.
|t Production by Recombinant Microorganisms --
|g 7.9.3.
|t Protein Engineering and Amino Acids Mutagenesis --
|g 7.9.4.
|t Chemical Stabilization Method --
|g 7.9.5.
|t Metal Ions Stabilization Method --
|g 7.9.6.
|t Immobilization Method --
|g 7.10.
|t Industrial Applications --
|g 7.11.
|t Future Trends --
|t References --
|g 8.
|t Cellulases: Characteristics, Sources, Production, and Applications /
|r Yi-Heng Percival Zhang --
|g 8.1.
|t Introduction --
|g 8.2.
|t Cellulases and Their Roles in Cellulose Hydrolysis --
|g 8.2.1.
|t Cellulase Enzyme Systems for Cellulose Hydrolysis --
|g 8.2.2.
|t Sequence Families of Cellulases and Their Three-Dimensional Structures --
|g 8.2.3.
|t Catalytic Mechanisms of Cellulases --
|g 8.2.4.
|t Endoglucanase --
|g 8.2.5.
|t Exoglucanase --
|g 8.2.6.
|t β-Glucosidase --
|g 8.2.7.
|t Substrate, Synergy, and Model --
|g 8.2.8.
|t Cellulase Activity Assays --
|g 8.3.
|t Cellulase Improvement Efforts --
|g 8.3.1.
|t Directed Evolution --
|g 8.3.2.
|t Rational Design --
|g 8.3.3.
|t Designer Cellulosome --
|g 8.4.
|t Applications and Productions of Cellulase --
|g 8.4.1.
|t Industrial Applications of Cellulases --
|g 8.4.2.
|t Cellulase Production --
|g 8.5.
|t Consolidated Bioprocessing --
|g 8.6.
|t Perspectives --
|t References --
|g 9.
|t Xylanases: Characteristics, Sources, Production, and Applications /
|r Paul Christakopoulos --
|g 9.1.
|t Introduction --
|g 9.2.
|t Biochemical Characteristics of Xylanases --
|g 9.2.1.
|t Chemical Structure of Xylan --
|g 9.2.2.
|t Source of Xylanolytic Enzymes --
|g 9.2.3.
|t Catalytic Mechanisms --
|g 9.2.4.
|t Crystal Structure of Xylanases --
|g 9.2.5.
|t Catalytic Properties --
|g 9.2.6.
|t Xylanase Inhibitors --
|g 9.3.
|t Xylanase Production --
|g 9.3.1.
|t Selection of a Native Hyperproducer and Conventional Medium Optimization --
|g 9.3.2.
|t Mode of Fermentation --
|g 9.3.3.
|t Induction by the Carbon Source --
|g 9.3.4.
|t Application of Statistical Methods --
|g 9.3.5.
|t Cloning Using Suitable Hosts --
|g 9.4.
|t Application of Xylanases --
|g 9.4.1.
|t Bioethanol Production --
|g 9.4.2.
|t Cereal-Based Applications --
|g 9.4.3.
|t Production of Xylo-Oligosaccharides --
|g 9.4.4.
|t Xylanases in Pulp and Paper Biotechnology --
|g 9.4.5.
|t Textiles --
|g 9.4.6.
|t Retting of Flax --
|t References --
|g 10.
|t Lignin-Degrading Enzymes: An Overview /
|r Victor Ibrahim --
|g 10.1.
|t Introduction: Lignin as Renewable Resource --
|g 10.2.
|t Lignin Degraders --
|g 10.3.
|t Ligninolytic Peroxidases --
|g 10.3.1.
|t Peroxidase Catalytic Cycles and Substrates --
|g 10.3.2.
|t Diversity of Ligninolytic Peroxidases --
|g 10.3.3.
|t Gene Regulation --
|g 10.3.4.
|t Structural Features --
|g 10.3.5.
|t Oxidation Site for Aromatic Substrates --
|g 10.3.6.
|t Manganese Oxidation Site --
|g 10.3.7.
|t Multiple Oxidation Sites in Versatile Peroxidase --
|g 10.4.
|t Laccase: The Blue Enzyme --
|g 10.4.1.
|t Catalytic Cycle and Substrates --
|g 10.4.2.
|t Source --
|g 10.4.3.
|t Biochemical and Structural Features --
|g 10.4.4.
|t Redox Mediators --
|g 10.5.
|t Lignin-Degrading Auxiliary Enzymes --
|g 10.5.1.
|t Glyoxal Oxidase --
|g 10.5.2.
|t Aryl Alcohol Oxidase --
|g 10.5.3.
|t Pyranose 2-Oxidase
|
880 |
0 |
0 |
|g --
|g 10.5.4.
|t Cellobiose Dehydrogenase --
|g 10.6.
|t Production of Lignin-Modifying Enzymes --
|g 10.6.1.
|t Different Fermentation Modes --
|g 10.6.2.
|t Production by Immobilized Fungi --
|g 10.6.3.
|t Solid-State Fermentation --
|g 10.6.4.
|t Production in Recombinant Systems --
|g 10.7.
|t Applications of Lignin-Modifying Enzymes --
|g 10.7.1.
|t Potential and Limitations --
|g 10.7.2.
|t Environmental Remediation --
|g 10.7.3.
|t Textile Industry --
|g 10.7.4.
|t Biopulping and Lignin Modification --
|g 10.7.5.
|t Food Industry --
|g 10.7.6.
|t Biosensors --
|g 10.7.7.
|t Synthetic Chemistry --
|g 10.7.8.
|t Cosmetics --
|g 10.8.
|t Ligninolytic Enzymes: Implications for Lignin Degradation and Future Lignocellulose Biorefineries --
|t Acknowledgments --
|t References --
|g 11.
|t Advances in Lignocellulosic Bioethanol /
|r Ashok Pandey --
|g 11.1.
|t Introduction --
|g 11.2.
|t Bioethanol versus Environment: Controversies --
|g 11.3.
|t Lignocellulosic Biomass: The Ubiquitous Raw Material --
|g 11.4.
|t Pretreatment: Preparation of Biomass for Enzymatic Hydrolysis --
|g 11.5.
|t Enzymatic Hydrolysis --
|g 11.6.
|t Biotechnological Approaches in Lignocellulosic Bioconversion --
|g 11.6.1.
|t SSF Concept --
|g 11.6.2.
|t Simultaneous Saccharification and Cofermentation --
|g 11.6.3.
|t Consolidated Bioprocessing (CBP) --
|g 11.7.
|t Conclusion --
|t Acknowledgments --
|t References.
|
880 |
0 |
0 |
|6 505-01/(S
|g Contents note continued:
|t References --
|g 23.
|t Microbial Production of Poly-γ-Glutamic Acid /
|r Cunjiang Song --
|g 23.1.
|t Introduction --
|g 23.2.
|t γ-PGA-Producing Microorganisms and Related Biosynthesis Pathways --
|g 23.2.1.
|t γ-PGA-Producing Microorganisms --
|g 23.2.2.
|t γ-PGA Biosynthesis Pathways --
|g 23.3.
|t Bioprocess Development for γ-PGA Production --
|g 23.3.1.
|t Nutrients Requirements and Culture Condition Optimization --
|g 23.3.2.
|t Bioprocess Development --
|g 23.4.
|t Direct Utilization of Glucose for γ-PGA Biosynthesis --
|g 23.4.1.
|t Screening of High-Yield γ-PGA Producers for Direct Utilization of Glucose --
|g 23.4.2.
|t Cocultivation of Corynebacterium glutamicum and B. subtilis --
|g 23.4.3.
|t Genetic Engineering of Host Strains --
|g 23.5.
|t Separation and Characterization of γ-PGA from Fermentation Broth --
|g 23.5.1.
|t Separation and Purification of γ-PGA --
|g 23.5.2.
|t Characterization of γ-PGA --
|g 23.6.
|t Modifications and Applications of γ-PGA --
|g 23.6.1.
|t Food and Skin Care Products --
|g 23.6.2.
|t Agricultural Products --
|g 23.6.3.
|t Biopolymer Flocculant --
|g 23.6.4.
|t Applications in Medicine --
|t Acknowledgments --
|t References --
|g 24.
|t Refining Food Processing By-Products for Value-Added Functional Ingredients /
|r Y. Martin Lo --
|g 24.1.
|t Introduction --
|g 24.2.
|t Dietary Fiber --
|g 24.2.1.
|t Introduction --
|g 24.2.2.
|t Source of Dietary Fiber --
|g 24.2.3.
|t Isolation and Production of Dietary Fiber from Food Processing By-Products --
|g 24.3.
|t Antioxidants --
|g 24.3.1.
|t Introduction --
|g 24.3.2.
|t Sources of Dietary Antioxidants --
|g 24.3.3.
|t Isolation and Production of Antioxidants from Food Processing By-Products --
|g 24.4.
|t Food Colorants --
|g 24.4.1.
|t Introduction --
|g 24.4.2.
|t Isolation and Production of Anthocyanin Pigments from Food By-Products --
|g 24.4.3.
|t Isolation and Production of Carotenoid Pigments from Food By-Products --
|g 24.5.
|t Concluding Remarks --
|t References.
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH25496361
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1204851
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10716210
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 588870
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 9985199
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10745735
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10754377
|
994 |
|
|
|a 92
|b IZTAP
|