Case-based reasoning : a concise introduction /
Case-based reasoning is a methodology with a long tradition in artificial intelligence that brings together reasoning and machine learning techniques to solve problems based on past experiences or cases. Given a problem to be solved, reasoning involves the use of methods to retrieve similar past cas...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cham, Switzerland :
Springer,
©2013.
|
Colección: | Synthesis lectures on artificial intelligence and machine learning ;
#20. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Introduction
- 1.1 CBR systems taxonomy
- 1.2 Foundational issues
- 1.3 Related fields
- 1.4 Bibliographic notes.
- 2. The case-base
- 2.1 Vocabulary
- 2.2 Case modeling
- 2.2.1 Problem description
- 2.2.2 Solution description
- 2.2.3 Outcome
- 2.3 Case-base organization
- 2.4 Bibliographic notes.
- 3. Reasoning and decision making
- 3.1 Retrieve
- 3.1.1 Similarity assessment
- 3.1.2 Ranking and selection
- 3.1.3 Normalization, discretization, and missing data
- 3.2 Reuse
- 3.2.1 Solution copy
- 3.2.2 Solution adaptation
- 3.2.3 Specific purpose methods
- 3.3 Revise
- 3.4 Bibliographic notes.
- 4. Learning
- 4.1 Similarity learning
- 4.1.1 Measure learning
- 4.1.2 Feature relevance learning
- 4.2 Maintenance
- 4.2.1 Retain
- 4.2.2 Review
- 4.2.3 Restore
- 4.3 Bibliographic notes.
- 5. Formal aspects
- 5.1 Description logics
- 5.2 Bayesian model
- 5.3 Fuzzy set formalization
- 5.4 Probabilistic formalization
- 5.5 Case-based decisions
- 5.6 Bibliographic notes.
- 6. Summary and beyond
- 6.1 Explanations
- 6.2 Provenance
- 6.3 Distributed approaches
- 6.4 Bibliographic notes
- Bibliography
- Author's biography.