Cargando…

Undergraduate convexity : from Fourier and Motzkin to Kuhn and Tucker /

Based on undergraduate teaching to students in computer science, economics and mathematics at Aarhus University, this is an elementary introduction to convex sets and convex functions with emphasis on concrete computations and examples. Starting from linear inequalities and Fourier-Motzkin eliminati...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lauritzen, Niels, 1964- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Hackensack] New Jersey : World Scientific, [2013]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn843871633
003 OCoLC
005 20240329122006.0
006 m o d
007 cr mn|||||||||
008 130521s2013 njua ob 001 0 eng d
040 |a HKP  |b eng  |e rda  |e pn  |c HKP  |d IDEBK  |d OCLCO  |d STF  |d E7B  |d N$T  |d DEBSZ  |d YDXCP  |d OSU  |d NLE  |d CDX  |d MYG  |d GGVRL  |d OCLCQ  |d K6U  |d OCLCF  |d OCLCQ  |d LOA  |d AGLDB  |d MOR  |d PIFAG  |d ZCU  |d MERUC  |d OCLCQ  |d JBG  |d OCLCQ  |d U3W  |d WRM  |d VTS  |d NRAMU  |d ICG  |d INT  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ  |d OCLCL 
019 |a 842882092  |a 860492486  |a 884809315  |a 1066011503 
020 |a 9789814412520  |q (electronic bk.) 
020 |a 981441252X  |q (electronic bk.) 
020 |a 9789814412537  |q (electronic bk.) 
020 |a 9814412538  |q (electronic bk.) 
020 |a 9781299556331  |q (electronic bk.) 
020 |a 1299556337  |q (electronic bk.) 
020 |z 9789814412513 
020 |z 9814412511 
020 |z 9789814452762  |q (pbk.) 
020 |z 9814452769  |q (pbk.) 
029 1 |a AU@  |b 000053308831 
029 1 |a DEBBG  |b BV043036547 
029 1 |a DEBBG  |b BV044175615 
029 1 |a DEBSZ  |b 384346413 
029 1 |a DEBSZ  |b 421256265 
029 1 |a DEBSZ  |b 454905106 
029 1 |a NZ1  |b 15588344 
029 1 |a DKDLA  |b 800010-katalog:99122745083005763 
029 1 |a DKDLA  |b 820050-katalog:9920626552205762 
035 |a (OCoLC)843871633  |z (OCoLC)842882092  |z (OCoLC)860492486  |z (OCoLC)884809315  |z (OCoLC)1066011503 
050 4 |a QA331.5  |b .L295 2013eb 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515.8  |2 23 
049 |a UAMI 
100 1 |a Lauritzen, Niels,  |d 1964-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjM7dwjwXjhJHfcDMYcycX 
245 1 0 |a Undergraduate convexity :  |b from Fourier and Motzkin to Kuhn and Tucker /  |c Niels Lauritzen. 
264 1 |a [Hackensack] New Jersey :  |b World Scientific,  |c [2013] 
264 4 |c ©2013 
300 |a 1 online resource (xiv, 283 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 3 |a Based on undergraduate teaching to students in computer science, economics and mathematics at Aarhus University, this is an elementary introduction to convex sets and convex functions with emphasis on concrete computations and examples. Starting from linear inequalities and Fourier-Motzkin elimination, the theory is developed by introducing polyhedra, the double description method and the simplex algorithm, closed convex subsets, convex functions of one and several variables ending with a chapter on convex optimization with the Karush-Kuhn-Tucker conditions, duality and an interior point algorithm--Page [4] of cover. 
504 |a Includes bibliographical references (pages 273-275) and index. 
505 0 |a 1. Fourier-Motzkin elimination. 1.1. Linear inequalities. 1.2. Linear optimization using elimination. 1.3. Polyhedra. 1.4. Exercises -- 2. Affine subspaces. 2.1. Definition and basics. 2.2. The affine hull. 2.3. Affine subspaces and subspaces. 2.4. Affine independence and the dimension of a subset. 2.5. Exercises -- 3. Convex subsets. 3.1. Basics. 3.2. The convex hull. 3.3. Faces of convex subsets. 3.4. Convex cones. 3.5. Carathéodory's theorem. 3.6. The convex hull, simplicial subsets and Bland's rule. 3.7. Exercises -- 4. Polyhedra. 4.1. Faces of polyhedra. 4.2. Extreme points and linear optimization. 4.3. Weyl's theorem. 4.4. Farkas's lemma. 4.5. Three applications of Farkas's lemma. 4.6. Minkowski's theorem. 4.7. Parametrization of polyhedra. 4.8. Doubly stochastic matrices: the Birkhoff polytope. 4.9. Exercises -- 5. Computations with polyhedra. 5.1. Extreme rays and minimal generators in convex cones. 5.2. Minimal generators of a polyhedral cone. 5.3. The double description method. 5.4. Linear programming and the simplex algorithm. 5.5. Exercises -- 6. Closed convex subsets and separating hyperplanes. 6.1. Closed convex subsets. 6.2. Supporting hyperplanes. 6.3. Separation by hyperplanes. 6.4. Exercises. 7. Convex functions. 7.1. Basics. 7.2. Jensen's inequality. 7.3. Minima of convex functions. 7.4. Convex functions of one variable. 7.5. Differentiable functions of one variable. 7.6. Taylor polynomials. 7.7. Differentiable convex functions. 7.8. Exercises -- 8. Differentiable functions of several variables. 8.1. Differentiability. 8.2. The chain rule. 8.3. Lagrange multipliers. 8.4. The arithmetic-geometric inequality revisited. 8.5. Exercises -- 9. Convex functions of several variables. 9.1. Subgradients. 9.2. Convexity and the Hessian. 9.3. Positive definite and positive semidefinite matrices. 9.4. Principal minors and definite matrices. 9.5. The positive semidefinite cone. 9.6. Reduction of symmetric matrices. 9.7. The spectral theorem. 9.8. Quadratic forms. 9.9. Exercises -- 10. Convex optimization. 10.1. A geometric optimality criterion. 10.2. The Karush-Kuhn-Tucker conditions. 10.3. An example. 10.4. The Langrangian, saddle points, duality and game theory. 10.5. An interior point method. 10.6. Maximizing convex functions over polytopes. 10.7. Exercises. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Convex functions. 
650 0 |a Convex domains. 
650 6 |a Fonctions convexes. 
650 6 |a Algèbres convexes. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Convex domains  |2 fast 
650 7 |a Convex functions  |2 fast 
758 |i has work:  |a Undergraduate convexity (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFWBQK8QPYMxfFy83BfGtq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Lauritzen, Niels, 1964-  |t Undergraduate convexity.  |d Singapore ; Hackensack, NJ : World Scientific, ©2013  |z 9789814452762  |w (DLC) 2013427381  |w (OCoLC)798617460 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1193426  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25243954 
938 |a Coutts Information Services  |b COUT  |n 25409825 
938 |a ebrary  |b EBRY  |n ebr10700616 
938 |a EBSCOhost  |b EBSC  |n 575386 
938 |a Cengage Learning  |b GVRL  |n GVRL8REE 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25409825 
938 |a YBP Library Services  |b YANK  |n 10697900 
994 |a 92  |b IZTAP