Cargando…

Data warehousing in the age of big data /

"In conclusion as you come to the end of this book, the concept of a Data Warehouse and its primary goal of serving the enterprise version of truth, and being the single platform for all the source of information will continue to remain intact and valid for many years to come. As we have discus...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Krishnan, Krish
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Morgan Kaufmann is an imprint of Elsevier, 2013.
Colección:Morgan Kaufmann Series on Business Intelligence.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn843860813
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 130520s2013 ne ob 001 0 eng d
010 |z  2013004151 
040 |a YDXCP  |b eng  |e pn  |c YDXCP  |d OCLCO  |d IDEBK  |d N$T  |d OPELS  |d VRC  |d UIU  |d E7B  |d OCLCA  |d A7U  |d TEFOD  |d COO  |d OCLCF  |d UKDOC  |d GGVRL  |d DEBSZ  |d OCLCQ  |d CDX  |d TEFOD  |d OCLCQ  |d D6H  |d LOA  |d ICA  |d LVT  |d AGLDB  |d K6U  |d Z5A  |d PIFAG  |d FVL  |d ZCU  |d UAB  |d LIV  |d MERUC  |d OCLCQ  |d U3W  |d KIJ  |d STF  |d WRM  |d VTS  |d ICG  |d INT  |d VT2  |d AU@  |d OCLCQ  |d OTZ  |d WYU  |d S9I  |d OCLCQ  |d A6Q  |d LEAUB  |d DKC  |d OCLCQ  |d CNCEN  |d UKCRE  |d YDX  |d OCLCO  |d QGK  |d COA  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 843337186  |a 862425130  |a 962188938  |a 972040311  |a 991943306  |a 1037759900  |a 1038589885  |a 1055369506  |a 1065877653  |a 1081254196  |a 1083611350  |a 1103252252  |a 1105788383  |a 1129363260  |a 1153047250  |a 1259214933  |a 1340107254 
020 |a 0124059201  |q (electronic bk.) 
020 |a 9780124059207  |q (electronic bk.) 
020 |a 1299591914  |q (electronic bk.) 
020 |a 9781299591912  |q (electronic bk.) 
020 |z 9780124058910  |q (pbk.) 
020 |z 0124058914  |q (pbk.) 
024 8 |a C20120027378 
024 8 |a 9780124058910 
024 8 |a (WaSeSS)ssj0000872952 
029 1 |a AU@  |b 000051859724 
029 1 |a CHNEW  |b 000721731 
029 1 |a CHNEW  |b 001011182 
029 1 |a CHVBK  |b 338945571 
029 1 |a CHVBK  |b 519285565 
029 1 |a DEBBG  |b BV042314322 
029 1 |a DEBSZ  |b 404303765 
029 1 |a DEBSZ  |b 405348274 
029 1 |a DEBSZ  |b 481273107 
029 1 |a NZ1  |b 15194878 
029 1 |a NZ1  |b 16175258 
029 1 |a DKDLA  |b 820120-katalog:999931495705765 
035 |a (OCoLC)843860813  |z (OCoLC)843337186  |z (OCoLC)862425130  |z (OCoLC)962188938  |z (OCoLC)972040311  |z (OCoLC)991943306  |z (OCoLC)1037759900  |z (OCoLC)1038589885  |z (OCoLC)1055369506  |z (OCoLC)1065877653  |z (OCoLC)1081254196  |z (OCoLC)1083611350  |z (OCoLC)1103252252  |z (OCoLC)1105788383  |z (OCoLC)1129363260  |z (OCoLC)1153047250  |z (OCoLC)1259214933  |z (OCoLC)1340107254 
037 |a 490441  |b MIL 
037 |a 933188FB-27F2-4793-A537-B72686CEC28D  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.9.D37  |b K75 2013eb 
072 7 |a COM  |x 021040  |2 bisacsh 
082 0 4 |a 005.74/5  |2 23 
049 |a UAMI 
100 1 |a Krishnan, Krish. 
245 1 0 |a Data warehousing in the age of big data /  |c Krish Krishnan. 
264 1 |a Amsterdam :  |b Morgan Kaufmann is an imprint of Elsevier,  |c 2013. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
490 1 |a The Morgan Kaufmann Series on Business Intelligence 
520 |a "In conclusion as you come to the end of this book, the concept of a Data Warehouse and its primary goal of serving the enterprise version of truth, and being the single platform for all the source of information will continue to remain intact and valid for many years to come. As we have discussed across many chapters and in many case studies, the limitations that existed with the infrastructures to create, manage and deploy Data Warehouses have been largely eliminated with the availability of Big Data technologies and infrastructure platforms, making the goal of the single version of truth a feasible reality. Integrating and extending Big Data into the Data Warehouse, and creating a larger decision support platform will benefit businesses for years to come. This book has touched upon governance and information lifecycle management aspects of Big Data in the larger program, however you can reuse all the current program management techniques that you follow for the Data Warehouse for this program and even implement agile approaches to integrating and managing data in the Data Warehouse. Technologies will continue to evolve in this spectrum and there will be more additions of solutions, which can be integrated if you follow the modular integration approaches to building and managing the Data Warehouse. The Appendix sections contain many more case studies and a special section on Healthcare Information Factory based on Big Data approaches. These are more guiding posts to help you align your thoughts and goals to building and integrating Big Data in your Data Warehouse"--  |c Provided by publisher. 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Front Cover -- Data Warehousing in the Age of Big Data -- Copyright Page -- Contents -- Acknowledgments -- About the Author -- Introduction -- Part 1: Big Data -- Part 2: The Data Warehousing -- Part 3: Building the Big Data -- Data Warehouse -- Appendixes -- Companion website -- 1 BIG DATA -- 1 Introduction to Big Data -- Introduction -- Big Data -- Defining Big Data -- Why Big Data and why now? -- Big Data example -- Social Media posts -- Survey data analysis -- Survey data -- Weather data -- Twitter data -- Integration and analysis -- Additional data types -- Summary -- Further reading. 
505 8 |a 2 Working with Big Data -- Introduction -- Data explosion -- Data volume -- Machine data -- Application log -- Clickstream logs -- External or third-party data -- Emails -- Contracts -- Geographic information systems and geo-spatial data -- Example: Funshots, Inc. -- Data velocity -- Amazon, Facebook, Yahoo, and Google -- Sensor data -- Mobile networks -- Social media -- Data variety -- Summary -- 3 Big Data Processing Architectures -- Introduction -- Data processing revisited -- Data processing techniques -- Data processing infrastructure challenges -- Storage -- Transportation -- Processing. 
505 8 |a Journal -- Checkpoint -- HDFS startup -- Block allocation and storage in HDFS -- HDFS client -- Replication and recovery -- Communication and management -- Heartbeats -- CheckpointNode and BackupNode -- CheckpointNode -- BackupNode -- File system snapshots -- JobTracker and TaskTracker -- MapReduce -- MapReduce programming model -- MapReduce program design -- MapReduce implementation architecture -- MapReduce job processing and management -- MapReduce limitations (Version 1, Hadoop MapReduce) -- MapReduce v2 (YARN) -- YARN scalability -- Comparison between MapReduce v1 and v2 -- SQL/MapReduce. 
505 8 |a Speed or throughput -- Shared-everything and shared-nothing architectures -- Shared-everything architecture -- Shared-nothing architecture -- OLTP versus data warehousing -- Big Data processing -- Infrastructure explained -- Data processing explained -- Telco Big Data study -- Infrastructure -- Data processing -- 4 Introducing Big Data Technologies -- Introduction -- Distributed data processing -- Big Data processing requirements -- Technologies for Big Data processing -- Google file system -- Hadoop -- Hadoop core components -- HDFS -- HDFS architecture -- NameNode -- DataNodes -- Image. 
505 8 |a Zookeeper -- Zookeeper features -- Locks and processing -- Failure and recovery -- Pig -- Programming with pig latin -- Pig data types -- Running pig programs -- Pig program flow -- Common pig command -- HBase -- HBase architecture -- HBase components -- Write-ahead log -- Hive -- Hive architecture -- Infrastructure -- Execution: how does hive process queries? -- Hive data types -- Hive query language (HiveQL) -- Chukwa -- Flume -- Oozie -- HCatalog -- Sqoop -- Sqoop1 -- Sqoop2 -- Hadoop summary -- NoSQL -- CAP theorem -- Key-value pair: Voldemort -- Column family store: Cassandra -- Data model. 
542 |f Copyright: Elsevier Science & Technology  |g 2013 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Data warehousing. 
650 0 |a Big data. 
650 6 |a Entrepôts de données (Informatique) 
650 6 |a Données volumineuses. 
650 7 |a COMPUTERS  |x Database Management  |x Data Warehousing.  |2 bisacsh 
650 7 |a Big data  |2 fast 
650 7 |a Data warehousing  |2 fast 
650 7 |a Big Data  |2 gnd 
650 7 |a Data-Warehouse-Konzept  |2 gnd 
758 |i has work:  |a Data warehousing in the age of big data (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFTqgD8VxJB97rwTCFBWwC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9780124058910  |z 0124058914  |w (DLC) 2013004151 
830 0 |a Morgan Kaufmann Series on Business Intelligence. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1191051  |z Texto completo 
938 |a 123Library  |b 123L  |n 101410 
938 |a Coutts Information Services  |b COUT  |n 25451603 
938 |a ebrary  |b EBRY  |n ebr10698608 
938 |a EBSCOhost  |b EBSC  |n 486547 
938 |a Cengage Learning  |b GVRL  |n GVRL8DDW 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25451603 
938 |a YBP Library Services  |b YANK  |n 10714553 
994 |a 92  |b IZTAP