|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_ocn843635427 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
130502s1995 gw o 000 0 eng d |
010 |
|
|
|z 95002589
|
040 |
|
|
|a MHW
|b eng
|e pn
|c MHW
|d OCLCO
|d EBLCP
|d OCLCQ
|d DEBSZ
|d ZCU
|d MERUC
|d ICG
|d OCLCO
|d OCLCF
|d OCLCQ
|d OCLCO
|d OCLCQ
|d DKC
|d AU@
|d OCLCQ
|d HS0
|d OCLCQ
|d VLY
|d UWK
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1161999256
|
020 |
|
|
|a 9783110905120
|
020 |
|
|
|a 3110905124
|
029 |
1 |
|
|a DEBBG
|b BV044165936
|
029 |
1 |
|
|a DEBSZ
|b 478286538
|
035 |
|
|
|a (OCoLC)843635427
|z (OCoLC)1161999256
|
050 |
|
4 |
|a QA649.K544
|
050 |
|
4 |
|a QA685
|
082 |
0 |
4 |
|a 516.373
|
084 |
|
|
|a SK 370
|2 rvk
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Klingenberg, Wilhelm P. A.
|
245 |
1 |
0 |
|a Riemannian Geometry.
|
250 |
|
|
|a 2nd ed.
|
260 |
|
|
|a Berlin :
|b De Gruyter,
|c 1995.
|
300 |
|
|
|a 1 online resource (420 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a De Gruyter Studies in Mathematics ;
|v v. 1
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a Riemannian Geometry (Degruyter Studies in Mathematics).
|
505 |
0 |
|
|a Chapter 1: Foundations; 1.0 Review of Differential Calculus and Topology; 1.1 Differentiable Manifolds; 1.2 Tensor Bundles; 1.3 Immersions and Submersions; 1.4 Vector Fields and Tensor Fields; 1.5 Covariant Derivation; 1.6 The Exponential Mapping; 1.7 Lie Groups; 1.8 Riemannian Manifolds; 1.9 Geodesics and Convex Neighborhoods; 1.10 Isometric Immersions; 1.11 Riemannian Curvature; 1.12 Jacobi Fields; Chapter 2: Curvature and Topology; 2.1 Completeness and Cut Locus; 2.1 Appendix -- Orientation; 2.2 Symmetric Spaces; 2.3 The Hilbert Manifold of H1-curves
|
505 |
8 |
|
|a 2.4 The Loop Space and the Space of Closed Curves2.5 The Second Order Neighborhood of a Critical Point; 2.5 Appendix -- The S1- and the Z2-action on AM; 2.6 Index and Curvature; 2.6 Appendix -- The Injectivity Radius for 1/4-pinched Manifolds; 2.7 Comparison Theorems for Triangles; 2.8 The Sphere Theorem; 2.9 Non-compact Manifolds of Positive Curvature; Chapter 3: Structure of the Geodesic Flow; 3.1 Hamiltonian Systems; 3.2 Properties of the Geodesic Flow; 3.3 Stable and Unstable Motions; 3.4 Geodesics on Surfaces; 3.5 Geodesics on the Ellipsoid; 3.6 Closed Geodesies on Spheres
|
505 |
8 |
|
|a 3.7 The Theorem of the Three Closed Geodesics3.8 Manifolds of Non-Positive Curvature; 3.9 The Geodesic Flow on Manifolds of Negative Curvature; 3.10 The Main Theorem for Surfaces of Genus 0; References; Index
|
504 |
|
|
|a Includes bibliographical references (p. [393]-402) and index.
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Geometry, Riemannian.
|
650 |
|
0 |
|a Geometry, Differential.
|
650 |
|
6 |
|a Géométrie de Riemann.
|
650 |
|
6 |
|a Géométrie différentielle.
|
650 |
|
7 |
|a Geometry, Differential
|2 fast
|
650 |
|
7 |
|a Geometry, Riemannian
|2 fast
|
758 |
|
|
|i has work:
|a Riemannian geometry (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFYKpyCmhBrP6CVKgRb3HC
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|z 9783110145939
|
830 |
|
0 |
|a De Gruyter studies in mathematics.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=936428
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL936428
|
994 |
|
|
|a 92
|b IZTAP
|