Cargando…

The Adjunction Theory of Complex Projective Varieties.

An overview of developments in the past 15 years of adjunction theory, the study of the interplay between the intrinsic geometry of a projective variety and the geometry connected with some embedding of the variety into a projective space. Topics include consequences of positivity, the Hilbert schem...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sommese, Andrew J.
Otros Autores: Beltrametti, Mauro C.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin : De Gruyter, 1995.
Colección:De Gruyter expositions in mathematics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn843635032
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 130502s1995 gw o 000 0 eng d
040 |a MHW  |b eng  |e pn  |c MHW  |d OCLCO  |d EBLCP  |d OCLCQ  |d DEBSZ  |d ZCU  |d MERUC  |d ICG  |d OCLCO  |d OCLCF  |d OCLCQ  |d OCLCO  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d HS0  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9783110871746 
020 |a 3110871742 
029 1 |a DEBBG  |b BV044165112 
029 1 |a DEBSZ  |b 47828571X 
035 |a (OCoLC)843635032 
050 4 |a QA564 .B443 1995 
050 4 |a QA564.B443 
082 0 4 |a 516.3/5  |a 516.35  |a 516.36 
049 |a UAMI 
100 1 |a Sommese, Andrew J. 
245 1 4 |a The Adjunction Theory of Complex Projective Varieties. 
260 |a Berlin :  |b De Gruyter,  |c 1995. 
300 |a 1 online resource (420 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a De Gruyter Expositions in Mathematics ;  |v v. 16 
588 0 |a Print version record. 
520 |a An overview of developments in the past 15 years of adjunction theory, the study of the interplay between the intrinsic geometry of a projective variety and the geometry connected with some embedding of the variety into a projective space. Topics include consequences of positivity, the Hilbert schem. 
505 0 |a Preface; List of tables; Chapter 1. General background results; 1.1 Some basic definitions; 1.2 Surface singularities; 1.3 On the singularities that arise in adjunction theory; 1.4 Curves; 1.5 Nefvalue results; 1.6 Universal sections and discriminant varieties; 1.7 Bertini theorems; 1.8 Some examples; Chapter 2. Consequences of positivity; 2.1 k-ampleness and k-bigness; 2.2 Vanishing theorems; 2.3 The Lefschetz hyperplane section theorem; 2.4 The Albanese mapping in the presence of rational singularities; 2.5 The Hodge index theorem and the Kodaira lemma; 2.6 Rossi's extension theorems 
505 8 |a 2.7 Theorems of Andreotti-Grauert and GriffithsChapter 3. The basic varieties of adjunction theory; 3.1 Recognizing projective spaces and quadrics; 3.2 Pd-bundles; 3.3 Special varieties arising in adjunction theory; Chapter 4. The Hilbert scheme and extremal rays; 4.1 Flatness, the Hilbert scheme, and limited families; 4.2 Extremal rays and the cone theorem; 4.3 Varieties with nonnef canonical bundle; Chapter 5. Restrictions imposed by ample divisors; 5.1 On the behavior of k-big and ample divisors under maps; 5.2 Extending morphisms of ample divisors 
505 8 |a 5.3 Ample divisors with trivial pluricanonical systems5.4 Varieties that can be ample divisors only on cones; 5.5 Pd-bundles as ample divisors; Chapter 6. Families of unbreakable rational curves; 6.1 Examples; 6.2 Families of unbreakable rational curves; 6.3 The nonbreaking lemma; 6.4 Morphisms of varieties covered by unbreakable rational curves; 6.5 The classification of projective manifolds covered by lines; 6.6 Some spannedness results; Chapter 7. General adjunction theory; 7.1 Spectral values; 7.2 Polarized pairs (M, L) with nefvalue> dim M -- l and M singular 
505 8 |a 7.3 The first reduction of a singular variety7.4 The polarization of the first reduction; 7.5 The second reduction in the smooth case; 7.6 Properties of the first and the second reduction; 7.7 The second reduction (X, D) with KX + (n -- 3) D nef; 7.8 The three dimensional case; 7.9 Applications; Chapter 8. Background for classical adjunction theory; 8.1 Numerical implications of nonnegative Kodaira dimension; 8.2 The double point formula for surfaces; 8.3 Smooth double covers of irreducible quadric surfaces; 8.4 Surfaces with one dimensional projection from a line; 8.5 k-very ampleness 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Adjunction theory. 
650 0 |a Embeddings (Mathematics) 
650 0 |a Algebraic varieties. 
650 0 |a Projective spaces. 
650 6 |a Théorie de l'adjonction. 
650 6 |a Plongements (Mathématiques) 
650 6 |a Variétés algébriques. 
650 6 |a Espaces projectifs. 
650 7 |a Adjunction theory  |2 fast 
650 7 |a Algebraic varieties  |2 fast 
650 7 |a Embeddings (Mathematics)  |2 fast 
650 7 |a Projective spaces  |2 fast 
700 1 |a Beltrametti, Mauro C. 
758 |i has work:  |a The adjunction theory of complex projective varieties (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGhth6hMb46cxkVwMftmMP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9783110143553 
830 0 |a De Gruyter expositions in mathematics. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=913362  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL913362 
994 |a 92  |b IZTAP