Modelling drying processes : a reaction engineering approach /
This comprehensive summary of the state of the art and the ideas behind the reaction engineering approach (REA) to drying processes is an ideal resource for researchers, academics and industry practitioners. Starting with the formulation, modelling and applications of the lumped-REA, it goes on to d...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge :
Cambridge University Press,
2013.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Figures; Tables; Preface; Historical background; 1 Introduction; 1.1 Practical background; 1.2 A 'microstructural' discussion of the phenomena of drying moist, porous materials; 1.3 The REA to modelling drying; 1.3.1 The relevant classical knowledge of physical chemistry; 1.3.2 General modelling approaches; 1.3.3 Outline of REA; 1.4 Summary; References; 2 Reaction engineering approach I; 2.1 The REA formulation; 2.2 Determination of REA model parameters; 2.3 Coupling the momentum, heat and mass balances; 2.4 Mass or heat transfer limiting; 2.4.1 Biot number analysis
- 2.4.2 Lewis number analysis2.4.3 Combination of Biot and Lewis numbers; 2.5 Convective drying of particulates or thin layer products modelled using the L-REA; 2.5.1 Mathematical modelling of convective drying of droplets of whey protein concentrate (WPC) using the L-REA; 2.5.2 Mathematical modelling of convective drying of a mixture of polymer solutions using the L-REA; 2.5.3 Results of modelling convective drying of droplets of WPC using the L-REA; 2.5.4 Results of modelling convective drying of a thin layer of a mixture of polymer solutions using the L-REA
- 2.6 Convective drying of thick samples modelled using the L-REA2.6.1 Formulation of the L-REA for convective drying of thick samples; 2.6.2 Prediction of surface sample temperature; 2.6.3 Modelling convective drying thick samples of mango tissues using the L-REA; 2.6.4 Results of convective drying thick samples of mango tissues using the L-REA; 2.7 The intermittent drying of food materials modelled using the L-REA; 2.7.1 Mathematical modelling of intermittent drying of food materials using the L-REA; 2.7.2 The results of modelling of intermittent drying of food materials using the L-REA
- 2.7.3 Analysis of surface temperature, surface relative humidity, saturated and surface vapour concentration during intermittent drying2.8 The intermittent drying of non-food materials under time-varying temperature and humidity modelled using the L-REA; 2.8.1 Mathematical modelling using the L-REA; 2.8.2 Results of intermittent drying under time-varying temperature and humidity modelled using the L-REA; 2.9 The heating of wood under linearly increased gas temperature modelled using the L-REA; 2.9.1 Mathematical modelling using the L-REA
- 2.9.2 Results of modelling wood heating under linearly increased gas temperatures using the L-REA2.10 The baking of cake modelled using the L-REA; 2.10.1 Mathematical modelling of the baking of cake using the L-REA; 2.10.2 Results of modelling of the baking of cake using the L-REA; 2.11 The infrared-heat drying of a mixture of polymer solutions modelled using the L-REA; 2.11.1 Mathematical modelling of the infrared-heat drying of a mixture of polymer solutions using the L-REA