Cargando…

Data Mining : Practical Machine Learning Tools and Techniques, Second Edition.

Annotation.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Witten, I. H. (Ian H.)
Autor Corporativo: ebrary, Inc
Otros Autores: Frank, Eibe
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Diego : Los Angeles : Elsevier Science & Technology Books ; Sony Electronics [distributor]
Colección:Data Mining, the Morgan Kaufmann Ser. in Data Management Systems Ser.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn842281578
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |nu||||||||
008 090112e20090107mou o 000 0 eng
040 |a AU@  |b eng  |c AU@  |d OCLCO  |d OCLCQ  |d OCLCO  |d EBLCP  |d ZCU  |d MERUC  |d ICG  |d WYU  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCL 
019 |a 936903533 
020 |a 9780080477022  |q (electronic bk.) 
020 |a 008047702X  |q (electronic bk.) 
020 |a 9780120884070 
020 |a 0120884070 
029 0 |a AU@  |b 000050897853 
029 1 |a DEBBG  |b BV044081037 
035 |a (OCoLC)842281578  |z (OCoLC)936903533 
037 |b 00991439 
050 4 |a QA76.9.D34 
082 0 4 |a 005.741 
049 |a UAMI 
100 1 |a Witten, I. H.  |q (Ian H.)  |1 https://id.oclc.org/worldcat/entity/E39PBJgtcvTkCHwPWXvxbwgHYP 
245 1 0 |a Data Mining :  |b Practical Machine Learning Tools and Techniques, Second Edition. 
260 |a San Diego :  |b Elsevier Science & Technology Books ;  |a Los Angeles :  |b Sony Electronics [distributor] 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Data Mining, the Morgan Kaufmann Ser. in Data Management Systems Ser. 
520 8 |a Annotation.  |b As with any burgeoning technology that enjoys commercial attention, the use of data mining is surrounded by a great deal of hype. Exaggerated reports tell of secrets that can be uncovered by setting algorithms loose on oceans of data. But there is no magic in machine learning, no hidden power, no alchemy. Instead there is an identifiable body of practical techniques that can extract useful information from raw data. This book describes these techniques and shows how they work. The book is a major revision of the first edition that appeared in 1999. While the basic core remains the same, it has been updated to reflect the changes that have taken place over five years, and now has nearly double the references. The highlights for the new edition include thirty new technique sections; an enhanced Weka machine learning workbench, which now features an interactive interface; comprehensive information on neural networks; a new section on Bayesian networks; plus much more. 
505 0 |a Foreword; Preface; PART I: MACHINE LEARNING TOOLS AND TECHNIQUES; 1 What's it all about?; 2 Input: Concepts, instances, and attributes; 3 Output: Knowledge representation; 4 Algorithms: The basic methods; 5 Credibility: Evaluating what's been learned; 6 Implementations: Real machine learning schemes; 7 Transformations: Engineering the input and output; 8 Moving on: Extensions and applications; PART II: THE WEKA MACHINE LEARNING WORKBENCH; 9 Introduction to Weka; 10 The Explorer; 11 The Knowledge Flow Interface; 12 The Experimenter; 13 The Command-Line Interface 
505 8 |a 14 Embedded machine learning15 Writing New Learning Schemes; References; Index; About the Authors 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 4 |a Algoritmen. 
650 4 |a Data mining. 
650 4 |a Descoberta de conhecimento. 
650 4 |a Exploration de données (Informatique). 
650 4 |a Java (programmeertaal). 
650 4 |a Machine-learning. 
650 4 |a Mineração de dados. 
700 1 |a Frank, Eibe. 
710 2 |a ebrary, Inc. 
730 0 |a Ebrary Academic Complete Subscription Collection. 
776 0 8 |i Print version:  |a Witten, Ian H.  |t Data Mining : Practical Machine Learning Tools and Techniques, Second Edition  |d Burlington : Elsevier Science,c2014  |z 9780120884070 
830 0 |a Data Mining, the Morgan Kaufmann Ser. in Data Management Systems Ser. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=234978  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL234978 
994 |a 92  |b IZTAP